
ibm.com/redbooks

Front cover

IBM zPDT Guide and Reference
System z Personal Development Tool

Bill Ogden

IBM System z Personal Development Tool

Full IBM z/OS usage

Linux base

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

.

International Technical Support Organization

IBM zPDT Reference and Guide: System z Personal
Development Tool

December 2017

SG24-8205-03

© Copyright International Business Machines Corporation 2014, 2015, 2016, 2017. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Third Edition (December 2017)

This edition applies to Version 1, Release 8, of the IBM System z Personal Development Tool (zPDT).

Note: Before using this information and the product it supports, read the information in “Notices” on
page xi.

Contents

Notices . xi
Trademarks . xii

Preface . xiii
Authors. xiii
Comments welcome. xiv
Stay connected to IBM Redbooks . xiv

Chapter 1. Introduction. 1
1.1 General architecture . 1
1.2 zPDT security, integrity, and RAS concepts . 3
1.3 Terminology changes . 3

Chapter 2. Function, releases, content . 5
2.1 z System characteristics . 6

2.1.1 Architecture levels. 7
2.2 Hardware token. 7

2.2.1 Emulated I/O . 9
2.2.2 Concurrent PC workloads . 10

2.3 Operational overview . 11
2.3.1 Linux userids. 11
2.3.2 zPDT instances. 11
2.3.3 zPDT console . 12
2.3.4 Performance . 12

2.4 Base configurations. 14
2.4.1 Hardware and software levels. 14

2.5 Using older z System architectures. 16
2.6 zPDT Components . 16

2.6.1 zPDT elements . 17
2.6.2 Memory . 18
2.6.3 Disk space . 18
2.6.4 LAN adapters . 19
2.6.5 Device maps . 20
2.6.6 Linux directory structure . 21
2.6.7 zPDT control structure . 22

2.7 ISV zPDT and zD&T zPDT differences. 22
2.8 zPDT releases. 23

2.8.1 Version 1 Release 8 (December 2017). 23
2.8.2 Version 1 Release 7 (March 2017) . 25
2.8.3 Version 1 Release 6 (March 2015) . 26
2.8.4 Version 1 Release 5 (February 2014) . 27
2.8.5 Version 1 Release 4, and fix pack 1 (December 2012, May 2013). 28
2.8.6 Version 1 Release 3 (March 2012) . 29
2.8.7 Version 1 Release 2 (June 2011) . 31
2.8.8 Version 1 Release 1 . 32

Chapter 3. Devmaps . 35
3.1 Device maps . 35
3.2 System stanza. 36
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. iii

3.2.1 Adjunct-processor stanza . 40
3.2.2 System timer protocol stanza . 40

3.3 Manager stanzas. 40
3.3.1 The awsckd device manager . 42
3.3.2 The awsfba device manager . 43
3.3.3 The aws3274 device manager . 43
3.3.4 The awstape device manager. 45
3.3.5 The awsosa device manager . 46
3.3.6 The awsrdr device manager . 47
3.3.7 The awsprt device manager . 48
3.3.8 The awscmd device manager . 49
3.3.9 The awsscsi device manager . 50
3.3.10 The aws3215 device manager . 50
3.3.11 The awsoma device manager . 50
3.3.12 The awsctc device manager . 51

Chapter 4. zPDT commands. 53
4.1 The commands with examples . 54

4.1.1 The adstop command . 54
4.1.2 The alcckd command . 54
4.1.3 The alcfba command . 56
4.1.4 The ap_create command . 57
4.1.5 The ap_destroy command . 57
4.1.6 The ap_query command . 57
4.1.7 The ap_von and ap_voff commands. 58
4.1.8 The ap_vpd command . 58
4.1.9 The ap_zeroize command . 58
4.1.10 The attn command . 59
4.1.11 The aws_bashrc and aws_sysctl commands . 59
4.1.12 The aws_findlinuxtape command . 59
4.1.13 The aws_tapeInit command . 60
4.1.14 The aws_tapeInsp command . 60
4.1.15 The awsckmap command . 60
4.1.16 The awsin command. 61
4.1.17 The awsmount command . 61
4.1.18 The awsstart command. 63
4.1.19 The awsstat command . 63
4.1.20 The awsstop command. 64
4.1.21 The card2tape command . 65
4.1.22 The card2txt command . 65
4.1.23 The ckdPrint command . 65
4.1.24 The clientconfig command . 66
4.1.25 The clientconfig_authority command . 66
4.1.26 The clientconfig_cli command. 66
4.1.27 The cpu command . 67
4.1.28 The d command . 68
4.1.29 The display_gen2_acclog command. 69
4.1.30 The fbaPrint command . 69
4.1.31 The find_io command . 70
4.1.32 The hckd2ckd and hfba2fba commands . 71
4.1.33 The interrupt command. 71
4.1.34 The ipl command . 72
4.1.35 The ipl_dvd command. 72
iv IBM zPDT Reference and Guide

4.1.36 The ldk_server_config command . 73
4.1.37 The listVtoc command . 74
4.1.38 The loadparm command . 74
4.1.39 The managelogs command . 74
4.1.40 The memld command . 75
4.1.41 The mount_dvd command . 75
4.1.42 The msgInfo command . 76
4.1.43 The oprmsg command . 76
4.1.44 The pdsUtil command . 77
4.1.45 The query command . 78
4.1.46 The query_license command . 78
4.1.47 The rassummary command . 79
4.1.48 The ready command . 79
4.1.49 The restart command . 80
4.1.50 The scsi2tape command. 80
4.1.51 The SecureUpdateUtility command . 81
4.1.52 The SecureUpdate_authority command . 82
4.1.53 The senderrdata command. 82
4.1.54 The serverconfig command. 83
4.1.55 The serverconfig_cli command . 83
4.1.56 The settod command . 84
4.1.57 The snapdump command . 84
4.1.58 The st command . 85
4.1.59 The start command . 86
4.1.60 The stop command . 86
4.1.61 The storestatus command . 87
4.1.62 The storestop command . 87
4.1.63 The stpserverstart command . 88
4.1.64 The stpserverstop command. 88
4.1.65 The stpserverquery command . 88
4.1.66 The sys_reset command. 88
4.1.67 The tape2file command . 89
4.1.68 The tape2scsi command. 89
4.1.69 The tape2tape command . 90
4.1.70 The tapeCheck command. 90
4.1.71 The tapePrint command . 91
4.1.72 The token command . 91
4.1.73 The txt2card command . 92
4.1.74 The uimcheck command. 92
4.1.75 The uimreset command . 92
4.1.76 The uimserverstart command . 92
4.1.77 The uimserverstop command . 93
4.1.78 The Z1090_ADCD_install and Z1091_ADCD_install commands 93
4.1.79 The Z1090_token_update and Z1091_token_update commands 93
4.1.80 The Z1090_removall command . 94
4.1.81 The z1090instcheck command . 95
4.1.82 The z1090term command . 95
4.1.83 The z1090ver and z1091ver command. 95
4.1.84 The zpdtSecureUpdate command . 96

Chapter 5. zPDT installation. 97
5.1 Installation overview . 98

5.1.1 Disk planning . 99
 Contents v

5.2 Linux installation . 99
5.2.1 Other Linux notes . 100

5.3 TN3270e clients . 101
5.3.1 x3270 keyboard maps. 101

5.4 Installing zPDT software . 102
5.4.1 Alter Linux files . 103

5.5 Token activation and zPDT serial numbers . 106
5.6 Starting your new zPDT system . 106
5.7 Installing a different zPDT release . 107
5.8 IBM OpenClient special case . 107

Chapter 6. AD-CD installation . 109
6.1 General principles . 110
6.2 z System Operating Systems . 110

6.2.1 Media . 110
6.3 Installing a z/OS AD-CD system . 111

6.3.1 Specific installation instructions . 111
6.3.2 IODF device numbers . 112
6.3.3 zPDT control files . 113
6.3.4 IPL and operation . 114
6.3.5 Shutting down . 115
6.3.6 Startup messages . 115
6.3.7 Local volumes . 116

6.4 Multiple operating systems . 116

Chapter 7. LANs . 119
7.1 OSA CHPIDs. 119
7.2 Scenarios . 122
7.3 Overview of LAN usage . 122

7.3.1 Three 3270 interfaces . 122
7.4 Basic QDIO setup for z/OS . 123
7.5 Five scenarios . 124

7.5.1 Scenario 1. 125
7.5.2 Scenario 2. 127
7.5.3 Scenario 3. 129
7.5.4 Scenario 4. 131
7.5.5 Scenario 5. 132
7.5.6 Scenario comparison . 134
7.5.7 z/OS resolver . 135
7.5.8 Local router LAN setups . 136

7.6 Performance problems . 138
7.6.1 Jumbo frames . 139
7.6.2 Investigating lan performance problems . 140

7.7 Wireless connections . 140
7.8 Telnet to z/OS UNIX system services . 140
7.9 Choices . 141
7.10 Useful z/OS networking commands . 141
7.11 Non-QDIO operation . 142
7.12 More complete QDIO example . 143
7.13 VLAN usage . 145
7.14 Shared Ethernet adapters . 145
7.15 Base Linux LAN notes. 146
7.16 Ethernet SNA . 147
vi IBM zPDT Reference and Guide

7.17 NFS and SMB . 147

Chapter 8. zPDT licenses . 149
8.1 Basic Concepts . 149

8.1.1 Types of tokens and licenses . 150
8.2 Using a local zPDT system . 151
8.3 UIM usage details . 152
8.4 General zPDT client and server details. 153
8.5 Client Installation and configuration for remote servers . 154

8.5.1 Gen1 client configuration . 154
8.5.2 Gen2 client configuration . 155
8.5.3 Client UIM configuration . 157

8.6 Server installation and configuration . 157
8.6.1 UIM server . 158
8.6.2 Gen1 License server . 158
8.6.3 Gen2 License server . 159

8.7 General Notes . 160
8.7.1 Firewalls . 161
8.7.2 Disk and Linux changes . 161
8.7.3 Backup servers . 162
8.7.4 Cloning zPDT . 162
8.7.5 Removing functions . 162
8.7.6 License expiration notification. 162

8.8 Scenarios . 163
8.8.1 Display serial number assignments . 165
8.8.2 Security . 165
8.8.3 Resetting UIM . 167
8.8.4 SafeNet module restarts . 167
8.8.5 Gen2 servers . 167

8.9 Server search . 168
8.10 Numbers . 168
8.11 Gen1 token activation and renewal . 169

8.11.1 Overview of Gen1 token updates . 169
8.11.2 Gen1 token license update details (1090 tokens) . 170

8.12 Summary of relevant zPDT commands and files . 171
8.13 License manager glossary . 172

Chapter 9. Other System z Operating Systems . 175
9.1 z/VSE . 175
9.2 Linux for z Systems. 175
9.3 z/VM . 176
9.4 Installing the AD-CD z/VM 6.4 system . 176

9.4.1 zPDT devmap . 177
9.4.2 zPDT sensitivity . 177

9.5 IPL and logon . 177
9.6 Quick z/VM review . 180

9.6.1 CMS . 180
9.6.2 User MAINT . 180
9.6.3 Minidisks and files . 181
9.6.4 Inspecting your disks . 182
9.6.5 XEDIT . 184
9.6.6 z/VM directory . 185
9.6.7 Spool contents . 187
 Contents vii

9.6.8 Simple system queries . 188
9.6.9 zIIPs and zAAPs . 189
9.6.10 Paging. 189

9.7 z/TPF. 190

Chapter 10. Multiple instances and guests. 199
10.1 Multiple instances or guests . 199
10.2 Multiple guests in one instance . 200
10.3 Independent instances . 200
10.4 Instances with shared I/O . 203
10.5 Additional shared functions . 206

Chapter 11. The awscmd command . 209
11.1 Sample z/VM script . 210
11.2 z/OS use . 211

11.2.1 Sample z/OS program for awscmd . 212

Chapter 12. Minor z/OS notes . 219
12.1 Maintenance for AD-CD z/OS systems. 219
12.2 z/OS CP and memory display . 220
12.3 Excessive Health Checker messages. 221
12.4 z/OS spin loop timeouts . 221
12.5 Larger 3270 display. 222
12.6 z/OS disk STORAGE space . 222
12.7 Stand-alone z/OS dump . 223

12.7.1 Generating a stand-alone dump program . 223
12.7.2 Stand-alone dump output dataset . 224
12.7.3 Operating a stand-alone z/OS dump . 225

12.8 Moving 3390 volumes . 225
12.8.1 Create a source dump . 227
12.8.2 Send dump to Linux . 228
12.8.3 Receive dump . 228

12.9 IODF Changes with zPDT. 229
12.10 Local printing. 232

12.10.1 Setup. 233
12.10.2 Operational technique. 234

12.11 SYS1.LOGREC full . 235
12.12 Lost MVS console . 236
12.13 Unable to start ISPF . 236
12.14 Customized Offering Driver (COD) . 237

12.14.1 TCP/IP connection . 240
12.15 WLM and AD-CD . 241
12.16 RMF Monitor III . 244
12.17 OTELNET . 244
12.18 Compressing PARMLIB . 244
12.19 Burning 3390 volumes on CD . 245
12.20 Delete logstreams . 245
12.21 SMF. 245
12.22 Disabled waits . 246

Chapter 13. Additional zPDT notes . 251
13.1 “Free zIIPs” . 251
13.2 PC Hyper-Threading . 251
13.3 cpuopt statement. 252
viii IBM zPDT Reference and Guide

13.4 Read-only and shared DASD . 253
13.4.1 Shared read-only volumes . 254

13.5 Very large PC memory . 255
13.6 Token dates and times . 256
13.7 Typing OPRMSG too many times . 256
13.8 Important Linux command window . 256
13.9 Linux “out of memory” . 257
13.10 The crontab and sudo entries . 257
13.11 Dynamic configuration changes . 257
13.12 Security exposures . 258

13.12.1 Reducing root usage. 258
13.12.2 Linux suid use . 259
13.12.3 Gen1 token server monitoring. 259

13.13 z1090instcheck . 259
13.14 zPDT build information . 261
13.15 CKD versioning . 261
13.16 1090 messages. 262
13.17 TCP/UDP ports . 263
13.18 Remote operation . 263
13.19 Many zPDT devices . 263
13.20 Startup scripts . 264
13.21 Suspend and Hibernation . 265
13.22 Channel connections. 266
13.23 x3270 scripting . 267
13.24 Premounted tape. 268

Chapter 14. Tape drives and tapes . 271
14.1 The awsscsi device manager . 271
14.2 Parallel SCSI adapters . 274

14.2.1 Specific hardware tested. 275
14.3 zPDT 359x Tape Support . 276

14.3.1 The FCP Adapters . 277
14.3.2 3590/3592 Tape drives . 277

14.4 zPDT SCSI utilities . 277
14.5 Linux SCSI tape utilities . 278

14.5.1 awstape utilities. 278
14.6 Practical advice . 279

Chapter 15. DASD volume migration. 281
15.1 Warnings . 282
15.2 Operational characteristics of the migration utility. 283
15.3 Installation of the migration utility for z/OS . 283

15.3.1 Server installation . 284
15.3.2 RACF requirements . 285

15.4 Operation of the server under z/OS . 286
15.5 Installation of the server under z/VM. 286
15.6 Operation of server under z/VM . 287
15.7 The client commands . 287
15.8 Additional notes. 288

Chapter 16. Channel-to-channel . 291
16.1 z/OS use example. 293
16.2 Multiple instances and z/VM . 295

16.2.1 Devmaps. 295
 Contents ix

Chapter 17. Cryptographic usage . 299
17.1 Background information . 299
17.2 Devmap specification . 300
17.3 Initial ICSF startup. 300
17.4 Operational notes . 305

17.4.1 Multiple zPDT instances . 305
17.4.2 Coprocessor control commands . 306
17.4.3 New z/OS releases . 307
17.4.4 Programming with CSF. 307
17.4.5 z/VM usage . 309

Chapter 18. Virtualization . 311

Chapter 19. Problem handling . 313
19.1 Problems starting zPDT operation . 313
19.2 Problems during zPDT operation . 315
19.3 Core images . 317
19.4 Logs . 317
19.5 Emulated volume problems. 317
19.6 Linux monitoring . 319

Chapter 20. Server Time Protocol (STP) . 321
20.1 CCT uses . 323
20.2 Configuration. 323
20.3 Additional details . 325

20.3.1 Leap seconds . 326

Appendix A. FAQ . 329

Related publications . 341
IBM Redbooks . 341
Other References. 341
Help from IBM . 341

Index . 343
x IBM zPDT Reference and Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area.
Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product, program, or service that does
not infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. xi

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

CICS®
DB2®
Domino®
EtherJet™
FICON®
HiperSockets™
IBM®
IBM z Systems™
IBM z13™
IMS™
MVS™
NetView®

Parallel Sysplex®
PartnerWorld®
Passport Advantage®
RACF®
Rational®
Redbooks®
Redbooks (logo) ®
Resource Link®
RMF™
S/390®
System z®
VTAM®

WebSphere®
z Systems™
z/Architecture®
z/OS®
z/VM®
z/VSE®
z10™
z13™
zEnterprise®
zPDT®

The following terms are trademarks of other companies:

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

LTO, the LTO Logo and the Ultrium logo are trademarks of HP, IBM Corp. and Quantum in the U.S. and other
countries.

Microsoft, Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States,
other countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
xii IBM zPDT Reference and Guide

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication provides both introductory information and technical
details for the IBM System z® Personal Development Tool (IBM zPDT®), which produces a
small System z environment suitable for application development. zPDT is a PC Linux
application. When zPDT is installed (on Linux), normal System z Operating Systems (such as
IBM z/OS®) may be run on it. zPDT provides the basic System z architecture and provides
emulated IBM 3390 disk drives, 3270 interfaces, OSA interfaces, and so forth.

The systems that are discussed in this document are complex, with elements of Linux (for the
underlying PC machine), IBM z/Architecture® (for the core zPDT elements), System z I/O
functions (for emulated I/O devices), z/OS (the most common System z operating system),
and various applications and subsystems under z/OS. We assume that the reader is familiar
with general concepts and terminology of System z hardware and software elements, and
with basic PC Linux characteristics.

This book provides the primary documentation for zPDT and corresponds to zPDT V1 R8,
commonly known as GA8

Authors

This book was produced in the International Technical Support Center (ITSO),
Poughkeepsie. The author was Bill Ogden:

Bill Ogden is a retired Senior Technical Staff Member who continues to work part time with
projects he enjoys. These include working with new mainframe users and entry-level
systems.

The following people contributed substantially to this book:

Keith VanBenschoten, IBM Poughkeepsie, is the technical leader who provides zPDT test
systems and the zPDT installation processes and tools.

Theodore Bohizic, IBM Poughkeepsie, is a Senior Technical Staff Member responsible for
much of the design and implementation of zPDT.

Frank Kyne, with Watson and Walker, provided much-needed Sysplex assistance.

Alena Yampolskaya, IBM Poughkeepsie, is a member of the zPDT development team and
has been very helpful in resolving questions about new commands and functions.

Victor Penacho, IBM San Jose, has contributed performance techniques and details for
evaluation of these enhancements.

George Darling. IBM Poughkeepsie, contributes updates and understand of I/O elements
and specific z System architecture.
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. xiii

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

https://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xiv IBM zPDT Reference and Guide

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.linkedin.com/groups?home=&gid=2130806
http://www.redbooks.ibm.com/rss.html
https://twitter.com/ibmredbooks

Chapter 1. Introduction

The IBM z System Personal Development Tool (zPDT) provides an environment with one or
more IBM z System processors (with several emulated I/O device types), based on a
personal computer Linux environment. As the name implies, it is intended for development
and related purposes, such as education and demonstrations. It lacks the reliability,
availability, and serviceability (RAS), security, and flexibility of a larger z System machine and
is not licensed for production use.

This document is not intended as an introduction to IBM z Systems or to z/OS. Readers are
assumed to have background knowledge in these areas, and terms common to these areas
are used throughout this document without any additional introduction.

1.1 General architecture

IBM has long encouraged the use of several small IBM S/390®1 environments for use by the
IBM development community2, and these have proven useful. zPDT provides several
functions that extend the usefulness of small z System development systems. These include
z System instruction compatibility3, speciality processors,4 cryptographic adapter functions,
channel-to-channel operations, system timer protocol functions, and coupling facility
functions.

1

Important: This document corresponds to Version 1 Release 8 (“GA8”) of zPDT. GA8
provides IBM z14 architecture. Be aware that any operating systems used with this zPDT
release must be capable of IPLing and running on a z14. Many older operating systems
might require service in order to run on a z14.

Also, please note that older IBM Redbooks publications dealing with zPDT or the “Sysplex
Starter System” for zPDT are outdated and should not be used.

1 The reference to S/390 is for the historical context of this paragraph.
2 In this context, we primarily refer to the IBM PartnerWorld® for Developers organization (previously known as

Partners in Development).
3 Several instructions that are not relevant for zPDT are not provided.
4 These are IBM z System Integrated Information Processors (zIIPs), IBM z System Application Assist Processors

(zAAPs), and IBM Integrated Facility for Linux Processors (IFLs).
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 1

Providing these functions does not produce an environment equal to a larger z System, of
course. Some aspects of a larger system are unlikely to be met in any small environment;
these include the ability to verify and enhance the scalability of a program under
development, run application programs that require many hundreds or thousands of MIPS,
use cross-LPAR functions, or use unique Hardware Management Console (HMC) or Support
Element (SE) related interfaces. A larger z System is needed for these areas of development.
Likewise, a zPDT system is not suited for fine-level performance tuning that is sensitive to
memory location, cache functions, and pipeline optimization; larger z System machines have
different characteristics than zPDT at this level.

The basic zPDT function consists of the zPDT software (processor functions, device
emulators, utilities) plus a “license” needed to execute the zPDT functions. This license is
provided by a local or remote hardware USB key device (“token”) or by a software-only
license server.5 The license must be accessible when zPDT is being used, but can be
removed at other times. Chapter 8., “zPDT licenses” on page 149 goes into more detail about
license and token types.

In most cases, the underlying Linux PC (that is used to install and run the zPDT system)
should have at least one more PC core than the number of zPDT CPs used in the largest
zPDT instance. The base Linux machine that is used for zPDT must have sufficient memory.
No specific size is required, but 8 GB should be regarded as a bare minimum and many
zPDT systems have considerably more memory than this.6 Disk space is needed for
emulated 3390 (or 3380 or FBA) volumes and a typical zPDT base machine will have at least
200 GB of disk space.

zPDT systems can have up to eight emulated CPs7, limited by the number of licenses
available. The z System architecture levels for the CPs are indicated in Table 1-1.

Table 1-1 z System architecture levels

This document provides the primary documentation for zPDT Version 1 Release 8 (“GA8”).
Material about sysplex operation that was in prior editions has been moved to a new
document, zPDT 2016 Sysplex Extensions, SG24-8315-01, and zPDT 2017 Sysplex
Extensions, SG24-8386.

5 License details (including tokens) are described in “zPDT licenses” on page 149.
6 For users intending to install z/OS 2.3 (or later) we suggest 16 GB as a minimum PC memory size.
7 This maximum count includes general purpose CPs, zIIPs, zAAPs, and IFLs.

Release
date zPDT

zPDT
release

zPDT build
level

z System architecture ARCH level
(for compilers)

2009, 2010 V1R1 “GA1” 39.xx z800, z900 ARCH(7)

2011 V1R2 “GA2” 41.xx IBM z10™ ARCH(8)

2012 V1R3 “GA3” 43.xx z196 ARCH(9)

2013 V1R4 “GA4” 45.xx EC 12 ARCH(10)

2014 V1R5 “GA5” 47.xx EC 12 GA 2 ARCH(10)

2015 V1R6 “GA6” 49.xx IBM z13™ ARCH(11)

1Q 2017 V1R7 “GA7” 49.xx IBM z13™ GA2 ARCH(11)

4Q 2017 V1R8 “GA8” 51.xx IBM z14 ARCH(12)
2 IBM zPDT Reference and Guide

/abstracts/sg248315.html?Open

1.2 zPDT security, integrity, and RAS concepts

zPDT emulates z System architecture while running as a Linux application. zPDT has no
control over the security or integrity environment of this “base” Linux. While we believe that
zPDT generally follows reasonable Linux application standards, zPDT should not be
considered a secure system unless all aspects of access to the base Linux are also
considered. Within zPDT itself (while running an IBM operating system) the normal security
and integrity of that environment exists.8 For example, the z/OS AD-CD package typically
available to zPDT users contains RACF, and this can be used to manage security within the
z/OS environment.

At the base Linux level there is potential for many exposures. For example, a root user can
inspect any emulated 3390 or emulated tape file and potentially uncover confidential data
stored in these emulated devices. A malicious user could “front end” various zPDT
administrative commands (which run as ordinary Linux commands), although zPDT provides
some protection against this exposure. A small number of zPDT modules run with SUID to
root; a malicious user with access to these modules could modify them.

Ideally, access to the base Linux system running zPDT could be limited to only the necessary
trusted administrative personnel. General user access to the z System operating system
running under zPDT would be only through z System interfaces, such as emulated 3270
terminals.9 Such a restrictive environment is not always possible and, even where intended,
skills are needed to create and maintain the environment.

zPDT, viewed by itself, is not intended as a secure environment. It is up to the zPDT system
owner to create an overall security environment appropriate to the organization’s
requirements.

zPDT does not provide the reliability, scalability, or serviceability (RAS) of a standard z
System. zPDT has no control over exposures inherent in the underlying Linux system or the
underlying PC system. Careful selection, configuration, and management of these elements
can produce a good system, but there is no claim that it equals the RAS of a standard IBM z
System.

1.3 Terminology changes

Part of the terminology associated with various uses of zPDT has changed with the previous
zPDT release (“GA7”). This is likely to be confusing and we suggest you read the following
carefully.

The first releases of zPDT were for Independent Software Vendors (ISVs) who were qualified
through IBM partner programs.10 The IBM offering name and the program package name
was simply “zPDT” and it required a license token of IBM type1090. The terms “1090” and
“zPDT” were used interchangeably with no confusion.

8 A notable exception is that cryptographic keys for emulated cryptographic adapters are stored in standard Linux
files. These are secure from the z System viewpoint, but not from the Linux viewpoint.

9 The awscmd device manager provides a method for z/OS or z/VM users to send commands to the base Linux. This
function is useful to some zPDT customers, but might provide a security exposure for other customers.

Important: zPDT is intended for development work. It is not intended as a secure system.
We suggest you think twice before moving any confidential data to your zPDT systems.

10 This same zPDT releases, and same terminology, were also widely used within IBM.
Chapter 1. Introduction 3

The zPDT “program” is a package with many programs inside it, although we often refer to it
as a single “program.” The multiple programs include the emulator program itself, various
device emulation programs, and many smaller Linux programs that constitute the Linux
commands to manage zPDT.

A later offering was under the name Rational Development for z Unit Test (RDzUT),
subsequently changed to Rational Development and Test (RD&T), and again changed to
zD&T. This version required a license token type 1091. As the following table indicates, the
base program in these offerings is zPDT, while the current package names are zPDT or
zD&T.

The license control mechanisms are from Gemalto N.V., under the general product name of
SafeNet. The 1090 and 1091 tokens are from an older SafeNet product family we refer to as
Gen1. We refer to a newer SafeNet family of license control mechanisms as Gen2. The Gen2
licenses can be through a software-only control (no token) or through a new family of
hardware tokens.11 The zPDT program always identifies the emulated z System type as
1090, regardless of the token type or Gen2 license number.

During zPDT development the Gen1 tokens were sometimes referred to as SHK tokens, and
the Gen2 tokens (and software-only license server) were referred to as LDK licenses. You
might see these references in some documentation.

The zPDT program has minor differences between the ISV version and the zD&T version. For
example, the ISV version will not function with a 1091 token and vice versa. The zD&T
version requires an additional license feature in order to run z/VM or Coupling Facility code.
Other than differences at this level, the technical descriptions in this document apply to both
versions. In the few cases where differences exist, the text should make this apparent.

The installation processes for the ISV and zD&T versions are quite different, but this is
external to the operation of the zPDT program, once installed. This document describes the
installation process for the ISV version. Separate documents are available describing the
installation process for zD&T. Likewise, the administrative processes to obtain license
updates differ between the ISV and zD&T offerings. In both cases, the user must work with
his zPDT provider to obtain license updates.

In summary, “zPDT” is typically used to refer to the basic emulation program, but it can also
be a more restrictive reference to the ISV offering to differentiate it from the zD&T offering. A
much more extensive discussion of tokens and licenses is in Chapter 8., “zPDT licenses” on
page 149.

Table 1: Product offerings and license types

Offering
“Product”

Base
Pgm

Gen1
token
model

Gen2
license
number

emulated
CP
model

Prior names

[ISV] zPDT zPDT 1090 not used
yet

1090 z1090 (original), zPDT

zD&T zPDT 1091 333 1090 RDzUT, RD&T
(an option includes CF functions)

AD-CD zPDT 1090 or
1091

334 N/A AD-CD “decryption license” for
ISV zPDT and zD&T

11 At the time of writing, the Gen2 software-only licenses were intended only for special case zD&T situations,
typically involving Cloud access. The new Gen2 hardware tokens may become available for zPDT in the future.
Support for existing Gen1 tokens (1090 and 1091) will continue.
4 IBM zPDT Reference and Guide

Chapter 2. Function, releases, content

Terminology can be confusing in the computer business, especially when dealing with
systems such as zPDT. In this documentation we use the following terminology:

� The base machine, or underlying host, or underlying Linux, or host Linux is the
Intel-compatible personal computer (PC) that is running Linux.

� z/OS is used to refer to any recent release of the z/OS operating system. Likewise for
z/VM, and so forth.

� A device map, or devmap, is used to specify the operational configuration of zPDT. It is a
simple Linux flat file.

� Processor or core normally refers to the Intel or AMD processors (cores) in the base
machine. A two-core machine has two processors in this terminology, although both are
typically in one hardware “processor” module. There is always some confusion in this
terminology.

� CP refers to a general z System processor and is the major functional element of zPDT.
By default, zPDT provides z System CPs. You may optionally convert a CP to a zIIP,
zAAP, or IFL processor.1

� Open Systems Adapter (OSA) is sometimes used as shorthand for an OSA-Express
adapter. The zPDT GA8 system currently provides OSA-Express5 emulation.

� Many Linux commands, for the base Linux system, are shown throughout this book. If the
command is preceded with # (a hash or pound symbol) the command is entered in root
mode; if the command is preceded with a dollar sign ($), it is not entered in root mode.
The mode is important; do not attempt to use zPDT running completely as root.

� We mention zPDT releases as GA5, GA6, GA7 and so forth. This is an abbreviated
terminology. GA8, for example, means zPDT Version 1 Release 8. All zPDT releases, to
date, have been Version 1. The “GA” abbreviation is common terminology from IBM
meaning “General Availability.”

The primary operational characteristic of zPDT, in which the instruction set of one computer
platform (z System) is implemented through another platform (Intel or AMD) has a long

2

1 Using more general z System terminology, zPDT provides PUs. By default, the PUs are characterized as CPs, but
may be characterized as zIIPs, zAAPs, or IFLs instead. Throughout this document we generally refer only to CPs
and this reference should be understood to include zIIPs, zAAPs, and IFLs when these are used.
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 5

history in the computer business. This design has been described with many terms, including
microcode, millicode, simulation, emulation, translation, interception, assisted instructions,
machine interface (MI) architecture, machine level code, and so forth. We attempt to avoid all
this terminology and simply refer to the zPDT product.

2.1 z System characteristics

The zPDT functions include z System processor (CP) operation and the emulation of various
I/O devices. As a general statement, all the functions (instructions and I/O) needed to run
current z System Operating Systems are provided.

zPDT character data is typically in EBCDIC, the same as for any z System processor.
Emulated disks and tapes typically contain EBCDIC data, although they logically contain
whatever mix of EBCDIC, binary, ASCII, Unicode, or other formats that are produced by the z
System operating system and applications. The key point is that there is no routine translation
to the ASCII of the underlying host Linux system. The same binary data representation that is
used on large z Systems is also used on zPDT systems. This extends to fixed point, packed
decimal, and all floating point formats. All zPDT data is in z System representation.

System z software running in a zPDT environment is binary compatible with large IBM
System z machines. For example, application programs compiled and linked in one
environment can run unchanged in the other environment,2 assuming that configuration
elements are compatible.

There are exceptions for emulated card readers and printers, where the character set
involved is relevant and conversions between ASCII and EBCDIC are needed and are
automatically provided.

Not all z System instructions and functions are available with zPDT. Instructions that are
related to specific hardware facilities or optionally used by specialized programs might not be
present. This excluded list includes these items:

� Base Control Program internal interface (BCPii) functions
� List-directed IPL and Internal IPL
� The accelerator function of cryptographic coprocessors
� Time of Day (TOD) steering
� IBM enterprise® Blade Center Extension (zBX) functions
� CPU Measurement Facility
� Asynchronous data movers
� FICON, and Transport Mode I/O
� Parallel Access Volumes (PAV)
� Logical channel subsystems
� IBM Hi per Sockets™ functions
� LPARs
� Flash memory
� Multiple I/O paths
� zEDC (compression coprocessor)
� Multithreading (MT or symmetric MT (SMT))
� Customized cryptographic routines (UDX) (for Crypto Express adapter emulation) cannot

be used.

2 This general statement assumes that relevant operating system and other libraries are at compatible levels, and so
forth.
6 IBM zPDT Reference and Guide

IBM z System z14 systems do not have zAAP speciality processors. Work previously directed
to a zAAP can be done by a zIIP processor. zPDT, which operates with z14 architecture,
allows zAAPs to be configured although software, when detecting a z14 base, might not
accept the zAAP. zPDT users must manage zAAP usage to fit their base operating system
requirements and restrictions. zAAP speciality processors are mentioned throughout this
book for compatibility with earlier zPDT releases.

2.1.1 Architecture levels

IBM z System machines have architectural characteristics, such as new instructions on
newer systems or changed firmware characteristics. The architectures are not always
completely “backward compatible” and may require software updates to run older operating
systems on newer architectures. For example, z14 machines (including zPDT GA8) will not
run with the original z/VM 6.2 release. In this case, a PTF is needed to resolve the
incompatibility. Such software updates are often known as “toleration PTFs” and are usually
available for a certain number of older operating system releases when a new z System
series becomes available. IBM does not provide such updates for much earlier operating
systems.

2.2 Hardware token

A zPDT system is not functional without a machine-readable zPDT license. This can be from
a local USB token (a Gen1 1090 or 1091 token, or a newer Gen2 token3), or from a remote
license server (with 1090, 1091, Gen2 token, or Gen2 software-only licenses). The typical
USB tokens (“hardware keys”) are shown in Figure 2-1. A 1090 key is at the top of the
illustration and should always have a tag attached to it. A 1091 key is at the bottom of the
illustration and usually has a blue or green color code. The serial number of the 1090 key is
printed on the tag. The serial number of the 1091 key is engraved on the back of the key.

Throughout this document we frequently mention tokens. However, the equivalent zPDT (or
zD&T) license control is available through remote license servers where tokens (or special
“software-only” licenses) are present. When our text mentions “tokens” you should be aware
that this includes the potential use of these remote license functions.

Important: Operating systems run on zPDT GA8 must be configured for use with IBM z
System z14 machines. There are limitations about IPLing older operating systems. zPDT
GA8 is at the z System z14 level.

3 These are not yet available at the time of writing.
Chapter 2. Function, releases, content 7

Figure 2-1 The 1090 and 1091 hardware keys

If the token is removed while zPDT is operational or if the connection to a remote license
server is lost, the operation pauses with a series of messages, ending with these:

AWSEMI318I zPDTA Heartbeat Missing for CPU n
AWSEMI315I zPDTA License Unavailable for CPU n

If the intervening time interval does not disrupt the operating system or application programs,
zPDT operation can be resumed by connecting the license again.

A USB token (or other license form) is normally valid for one year after it is initialized or
activated. It can be reinitialized4 at any time, which normally extends the validity for a year
beyond the date of the most recent reinitialization.5 The procedure for initializing the key (or
reinitializing it) depends on the channel you used to obtain your zPDT system. This might be
through an IBM Business Partner or some other supplier. See “Gen1 token activation and
renewal” on page 169 for more about token updating.

More than one token may be used with a zPDT system. For example, using two 1090-L03
tokens provides up to 6 CPs (or combinations of CPs, zIIPs, zAAPs, and IFLs). Coupling
Facilities (available only under z/VM) are not counted for license purposes. The maximum
number of CPs (including the specialized processors) for a zPDT instance is eight.

Starting with zPDT GA8, zIIPs do not “count” when considering the number of licenses in your
token(s). This is discussed further in 13.1, ““Free zIIPs”” on page 251.

Various “SMP effects” reduce the effectiveness of additional CPs. For example, going from
seven to eight CPs might offer minimal performance enhancements for many workloads. The

4 This is also known as a “lease extension.”
5 The extension period might differ depending on the IBM channel used to obtain the zPDT system.
8 IBM zPDT Reference and Guide

I/O capability of the underlying PC must also be considered. However, this performance
determination is left to you.

2.2.1 Emulated I/O

A zPDT system includes twelve device managers, each of which provides emulation for a
related group of devices. A device manager can emulate multiple instances of its devices.

aws3274 Emulates a local, channel-attached 3274 control unit. This device manager is
almost always used to provide the IBM MVS™ console, for example, and 3270
application sessions. Each terminal appears (to the z System operating
system) as operating through a channel-attached non-SNA DFT IBM 3274
control unit. TN3270 sessions are used, via the base Linux TCP/IP interface.

awsckd Emulates 3390 (and 3380) disk units, using a single Linux file for each 3390 or
3380 device.

awsosa Emulates an OSA-Express2 adapter, in either QDIO (OSD) or non-QDIO (OSE)
mode. The hardware involved is an Ethernet adapter on the underlying PC.6
This device manager can support TCP/IP operation. SNA operation is not
supported.7 It can also support OSA/SF usage.

awstape Emulates a 3420, 3480, 3490, or 3590 tape drive, using a Linux file in place of
the tape media.

awscmd Emulates a tape drive but routes output records to the base Linux system
where they are executed as commands and returns Linux output to the
emulated tape drive.

awsfba Emulates FBA devices, which are supported by z/VSE and z/VM. A Linux file is
used for each emulated device. Note that this is not the Fibre Channel (Open
Systems) FBA on recent z System machines.

awsoma Emulates the Optical Media Attach interface, working with Linux files in this
format. This function is read-only.

aws3215 Emulates a 3215 console device (seldom used today), using a Linux terminal
window for the interface.

awsprt Emulates a 1403 or 3211 printer, using a Linux file for output. Provides
emulation of a 1403-N1 or 3211 printer. FCB emulation for 3211 is provided,
but UCS functions are not provided. Automatic ASCII translation (fixed
translation table) is provided.

awsrdr Emulates a 2540 card reader, using Linux files as input. (The 2540 card punch
functions are not emulated.) Both EBCDIC and ASCII data may be used.

awsscsi Uses a Linux SCSI-attached tape drive as a z System tape drive, providing a
way to read/write “real” mainframe tape volumes. See Chapter 14, “Tape drives
and tapes” on page 271 for specific drive and adapter details.

awsctc Emulates an IBM 3088 channel-to-channel adapter by using TCP/IP as the
communication mechanism. The connection can be the same zPDT instance,
another instance in the same PC, or a zPDT instance in a LAN-connected
machine.

A typical zPDT user, running z/OS, normally uses aws3274, awsckd, awsosa (if connectivity
other than local 3270s is needed), and, perhaps, awstape. The other device managers are
used less often.

6 Wireless can be considered an Ethernet adapter.
7 Initiating SNA operations (in non-QDIO mode) might be possible, but this usage has not been tested and is not

supported by IBM at this time.
Chapter 2. Function, releases, content 9

The emulated I/O support is summarized in Table 2-1 on page 10.

Table 2-1 Emulated I/O summary

The design of zPDT allows for a large number of emulated I/O devices. The number is
restricted, in practice, to better manage the memory and processing needed for emulated I/O.
The current zPDT design allows a maximum of 2048 emulated I/O devices. This is often
described as 2048 subchannels.

2.2.2 Concurrent PC workloads

An emulated z System processor, especially when running z/OS, must provide sufficient
processing power to meet basic requirements. z/OS has various timers running to detect
error situations. Sufficient processing power (for each CP, if multiple z System CPs are used)
must be available to prevent these timers from expiring. Insufficient processing power can
result in SPINLOOPs, MIH8 actions, OSA communication drops, or other apparent I/O device
error problems.

A dedicated PC system (that is, not running any other significant workload) should not
experience problems with typical developmental z System workloads. A “significant” workload
is anything that consumes substantial processor cycles or ties up the disk drives over long
time periods. This might be a Linux utility or an overcommitted virtual environment.

Use reasonable care even when extra base processor cores are available. For example,
performing large Linux disk copies9 while the z System function is operational can effectively
lock out normal z System work and create time-out situations.

It is possible to create “pathological” jobs that create I/O bottlenecks that result in excessive
MIH and other problems. We have not seen such situations in normal zPDT development
workloads, but the possibility exists.

Manager Control unit Emulated device Model

aws3274 3274 3279 (and rarely, 3284) various

awsrdr 2821 2540 card reader

awsprt 2821, 3811 1403, 3211 printers

awsckd 3990 3380, 3390 1, 2, 3, 9a

a. Model 9 refers to 3390s. Actually, a 3390 with any valid number of cylinders may be
defined and used, including EAV units.

awstape 3803, 3480, 3490 3420, 3422, 3480, 3490, 3490E, 3590

awsfba 3990 9336 1, 2b

b. The model emulated depends on the number of blocks defined, although z/VSE can force
a model selection.

awsoma 3803 3422 OMA

awsscsi 3480, 3490, 3590 3420, 3480, 3490, 3592

awsosa OSA OSA

aws3215 3215 3215

awsctc 3088 3088

8 Missing-interrupt handler
9 This can include using gunzip on AD-CD z/OS volumes while zPDT is active.
10 IBM zPDT Reference and Guide

2.3 Operational overview

This section provides a brief introduction to the zPDT definition and operational structure.

2.3.1 Linux userids

In principle, any Linux userid may be used to install10 or operate zPDT, with the exception that
a zPDT operational Linux userid cannot be longer than eight characters. All our examples
assume userid ibmsys1 is used, but there is nothing special about this name. The zPDT
system uses several default path names that are related to the current Linux userid.

In principle, a different Linux userid could be used to create a completely different zPDT
operational environment, with different control files, and so forth. Also, multiple Linux userids
must be used when running multiple zPDT instances concurrently. We use ibmsys2 and
ibmsys3 as examples of these additional userids.

Our Linux operating systems automatically create home directories for userids in the format
/home/<userid>. For example, the home directory for userid ibmsys1 is /home/ibmsys1. It is
possible to specify a different home directory for a userid. Throughout this document we often
use /home/ibmsys1 to indicate the home directory for the zPDT userid, even though the
specific use of ibmsys1 is not required.

2.3.2 zPDT instances

Logging into Linux and starting a zPDT operation creates an instance of zPDT usage. This
instance might have one or more z System CPs associated with it, depending on the licenses
available and the parameters in the devmap. If you then log in to Linux with a second Linux
userid, and start another zPDT operation, this creates a second instance. Multiple instances
means that multiple, independent zPDT environments are run in parallel. The total number of
CPs across all concurrent instances cannot exceed the number allowed by the token.11

A Gen1 1090 model L03 token can have up to three z System CPs (or mixtures of CPs,
zAAPs, and IFLs) plus up to three zIIPs. These could be used for three zPDT instances, each
with a single CP and separate z System memory12 and a separate z System operating
system. Alternatively, a single zPDT instance could be used with one, two, or three CPs; this
is the more likely usage for most zPDT users. The use of multiple CPs is subject to the
following restrictions and considerations:

� The number of defined CPs (including zIIPs, zAAPs, or IFLs) in one zPDT instance should
be at least one less than the number of processor cores on the base Linux system. For
example, a Lenovo W500 notebook computer with dual cores should not have more than
one CP defined in an instance. A W540 computer (quad core) could run 1, 2, or 3 CPs.
zPDT will not start if more CPs are defined than there are cores in the PC. A server with
many cores can easily fill this requirement.

� Full zPDT operation can use more cores in the base PC system than there are z System
CPs defined in any one instance. The additional processors are used for I/O, to help
prepare z System instructions for use, and for non-zPDT Linux processes.

10 Part of the installation process must be done as root, but the initial login should be with the userid that will be used
to operate zPDT.

11 Or by the total number of licenses from multiple tokens or software licenses, with a design limit of eight for any
given zPDT instance.

12 The combined z System memory is subject to the later discussion about memory.
Chapter 2. Function, releases, content 11

It is important to understand that the zPDT license controls are on the number of z System
CPs (or zAAPs, or IFLs) that are in concurrent use, and not on the number of base PC cores
that are being used. Table 2-2 makes this clearer.

Table 2-2 Possible CP configurations

It is possible to use more than one token. For example, a machine with two model L03 tokens
would have a maximum of six CPs. A significant “multiprocessor effect” is present and the
advantages of more than four or five CPs might be marginal, depending on the nature of the
workload. Also, the I/O limitations of the underlying PC become more relevant when using
more than three CPs.

In basic use, emulated I/O devices are unique to a zPDT instance. However, there are
advanced zPDT options that permit sharing emulated I/O devices among multiple instances.
The minimum number of base processor cores, as stated earlier, should be one more than
the maximum number of CPs in any instance. Other than this, there is no association of
particular base processor cores to CPs.

Most of this document is focused on single instance operation. “Multiple instances and
guests” on page 199 provides setup and usage instructions for multiple zPDT instances.

2.3.3 zPDT console

A zPDT system is operated from Linux command lines. This operation could be done
remotely through Telnet or SSH connections. A graphics connection is not needed.

There is no dedicated console program for sending commands to an operational zPDT
environment.13 All zPDT commands are Linux executable files that are entered from a Linux
shell prompt. The commands require that the zPDT instance be started by the same Linux
userid that issues the subsequent zPDT commands for that instance. For example, if Linux
userid ibmsys1 starts zPDT then only Linux userid ibmsys1 can issue an ipl command. The
ipl command is a Linux executable file, supplied with the other executables that constitute
the zPDT package.

zPDT sometimes issues asynchronous messages. These are sent to the Linux command
window that was used to start that zPDT instance. If that command window is closed, the
asynchronous messages are not seen. You can issue zPDT commands from any Linux
command window running under the Linux userid that started the zPDT instance.

2.3.4 Performance

IBM does not provide performance or capacity specifications for zPDT. Specifying
performance or capacity for zPDT is simply too difficult for many reasons, including the
following:

Token model One instance Two instances Three instances

1090-L01 1 CP Not possible Not possible

1090-L02 1 or 2 CPs 1 CP each Not possible

1090-L03 1, 2, or 3 CPs 1 CP each, or
1 CP in one and 2 CPs in
the other

1 CP each

13 Do not confuse zPDT commands with z/OS operator commands.
12 IBM zPDT Reference and Guide

� Performance depends on the power of the underlying hardware and this changes
frequently. Performance is related not just to the clock speed of the underlying processor
(such as 2.4 GHz for an Intel processor) but is also related to the memory design and the
pipelining, caching, and translation design of the underlying processor.

� Linux performance (including applications such as zPDT) can be greatly influenced by
how the Linux disk cache (and swap file) is performing, and the nature of the Linux disks.

� The number of CPs used by zPDT has an obvious effect, as do the number of cores in the
PC processor, but the effect is not linear.

� Every new release or update of zPDT can change performance.

� The z System instruction mix and memory reference pattern has a profound impact on
performance—a greater impact than is observed on a larger z System.

� MIPS (million instructions per second) is a rather discredited metric, although it is still
informally used with the smaller z Systems. Any MIPS number is very dependent on the
nature of the workload and the Linux configuration.

� I/O performance must be considered. For example, all emulated disk and tape operations
for zPDT might be from a single (relatively slow) computer disk drive, or might be from
solid-state disks. Workloads with modest I/O loads (when run on a larger z System) might
be completely I/O-bound on a zPDT system.

� Virtualization can add much more variability, especially when the host computer is
overcommitted.

As an example, zPDT on a Lenovo W520 notebook computer provides reasonable
performance for running z/OS, with typical TSO and batch usage, small IBM DB2® usage,
and so forth. Using emulated local 3270 connections, reasonable performance might be
maintained for a number of such users. The general “look and feel” for such usage generally
provides subsecond response typical of smaller z System installations.

The zPDT design goals are based on the assumption that it is the only significant application
running on the host Linux machine. The impact of additional applications (including, for
example, a highly-graphic game) is most significant for Linux memory management and
cache management. This can be considerably more important than the extra CPU cycles
taken by another application.

z/VM may be used with zPDT. The performance of guest operating systems under z/VM
(such as z/OS running under z/VM) is influenced by the use of the SIE instruction. On a large
z System, this instruction provides a “microcode assist”14 for many of the virtualization
functions performed by z/VM. Most SIE functions are provided by zPDT, but there is no direct
equivalent of a “microcode assist” level and the virtualization performance boost provided by
SIE is modest.

zPDT may be used in Linux shared file environments, such as provided by the Network File
System (NFS). Depending on how this is implemented, it can produce substantial
performance degradations. We suggest you test such use, in your operational environment,
before designing a configuration that depends on shared file operation.

Extreme configurations
IBM has not tested extreme zPDT configurations. For example, in theory a zPDT instance
can have up to 2048 devices, up to 8 CPs, and a base Linux can have up to 15 concurrent
zPDT instances. In a wildly extreme configuration, this might represent 15 * 2048 or over
30,000 emulated devices being used by 120 CPs. Extreme configurations, considerably

14 This is the common terminology for SIE operations, although the actual implementation might be much more
complex than implied by this statement.
Chapter 2. Function, releases, content 13

smaller than this example, might not be practical. Among other considerations, each
emulated device requires control blocks in Linux shared memory and a very large
configuration might cause difficulties with Linux shared memory and swap file configurations

Excessively busy storage devices (such as a large NAS device) that have prolonged
response times because of heavy loading (such as copying large amounts of data while
zPDT is attempting to use the device for emulated DASD) might cause problems.

zPDT is not intended to replace normal z System configurations. If you are considering a
configuration with more than, say, a hundred emulated devices, or with very heavily loaded
I/O devices, or with many z/VM guests, we suggest you discuss your requirements with your
zPDT supplier. Moderately large configurations are possible, but we suggest you review your
plans with knowledgeable zPDT people. For such configurations you must determine the
suitability of zPDT for your requirements. The key to this effort is a detailed understanding of
your workload.

2.4 Base configurations

A range of personal computer systems and Linux distributions might be used for zPDT.
These configurations change over time, due to frequent personal computer hardware
advances and new Linux releases. As a general statement, zPDT will work with any modern
Intel-compatible processor that is fully supported by the recommended Linux distributions.

The combination of the base Linux, zPDT operation, and z/OS operation (for example), with
associated LAN usage and emulated I/O devices, produces a complex environment. IBM has
tested zPDT functions extensively, but with a limited number of PC hardware configurations.

The zPDT formal IBM license statement regarding base systems includes the following text:

“The Program may be used on the following systems which are running versions of Linux
as specified in the Program’s read-me file: IBM System x 3500 M1, 3500 M2, 3500 M3,
3500 M4, 3650 M1, 3650 M2, 3650 M3, or 3650 M4; Lenovo Thinkpad W Series; or
systems otherwise approved by IBM.”

The license agreements might contain reporting requirements that must be understood by the
user. These are not covered in this document and can be reviewed with your IBM
representative or zPDT supplier.

The basic zPDT offering does not include any z System software. Although z System
software might be part of an offering that includes zPDT, the base zPDT product itself does
not include any z System software. z System software must be obtained in a media format
suitable for a zPDT machine.

2.4.1 Hardware and software levels

Both PC hardware and base Linux software change frequently. zPDT changes are needed to
maintain a reasonable level of compatibility. zPDT is not intended to be compatible with all
levels of Linux or with all available PC hardware. An informal guideline for both hardware and
software might be “not too old and not too new.”

Base Linux
zPDT Version 1 Release 8 “GA8” (December 2017) was built for operation on the Linux levels
listed in “Version 1 Release 8 (December 2017)” on page 23. These are the “supported” base
Linux releases. Earlier Linux distributions should not be used due to potential Linux library
14 IBM zPDT Reference and Guide

differences. Various Linux distributions might require you to make administrative
adjustments. For example, at the time of writing some Linux distributions require additional
commands to provide reasonable OSA performance.

A suitable 3270 emulator is needed. Many current Linux distributions might not include the
x3270 package, but it can be downloaded from various sites. Other 3270 emulators might be
used, but their operation with zPDT must be verified by you. IBM developers have also used
recent releases of the IBM PCOMM package (on Microsoft Windows systems).

Do not confuse the following two Linux systems:

� The Linux you install on your PC in order to run zPDT. This is your base Linux.
� The Linux for z Systems that you might elect to run under zPDT.

These are completely separate topics. With few exceptions, all mentions of “Linux” in this
book refer to the Linux you install on your PC.

Base PC hardware
zPDT Version 1 Release 8 was tested on the PC hardware listed in “Version 1 Release 8
(December 2017)” on page 23. The systems listed are the only tested machines for zPDT.
Other machines might work correctly with zPDT, but they have not been tested. In rare cases,
IBM might address zPDT problems only when reported on one of the tested machines.15 The
zPDT system has no specific requirements for these particular base machines and operating
systems, but the almost infinite number of possible combinations of other hardware and other
Linux versions have not been tested.

Additional notes on the hardware include the following:

� In all test cases, a minimum of 16 GB PC memory was available. Systems with up to 192
GB have been used.

� A CD/DVD drive was present on all test systems, and a USB port used for the zPDT
token. (Unpowered USB port extenders should not be used for the zPDT token.)

� Various USB disks were used to the extent supported by Linux.

� At the time of writing, the use of “bonded Ethernet interfaces” is not supported.16

� At the time of writing, network-attached storage (NAS) disks have had mixed reviews by
zPDT users. The issues are at the Linux level. zPDT is unaware of the nature of the Linux
disks except when access delays are so extensive that z/OS timeouts are triggered. If
Linux detects I/O problems with fairly intense use of the disks, we suggest that they are
not appropriate for zPDT use. In some cases, the usability might be related to congestion
and bandwidth of the LAN involved.

� A suitable USB port must be available for the hardware token.17 Do not use an unpowered
USB port expander when using zPDT. (The license server function, described in
Chapter 8, “zPDT licenses” on page 149, provides an alternative way to manage
licenses.)

Important: A useful z System installation, even as small as a zPDT system, can represent
a major investment for the owner. The zPDT development team assumes serious users
will select one of the supported Linux bases (RHEL or SLES or Ubuntu) that have been
extensively tested with zPDT. Over time zPDT will follow general Linux developments and
changes, but frequently chasing the latest Linux distributions is not a primary zPDT goal.

15 As of the time of writing, this situation was encountered only once and was due to attempted use of a very old PC.
16 Although bonding might work with zPDT, no IBM zPDT testing of this function was done.
17 The use of a remote license server is possible. In this case a USB port is not needed.
Chapter 2. Function, releases, content 15

� A DVD reader might be needed for loading software.

� Multiple LAN interfaces might be needed in larger configurations, although this is rare.

� We suggest disabling the hyperthreading (if available) at the BIOS level. Hyperthreading
can produce slowdowns when z/OS is running spinloops. If many PC cores are available
the slowdowns might be resolved before z/OS console messages are produced, meaning
there is no indication of a problem other than reduced performance. This is discussed
further in 13.2, “PC Hyper-Threading” on page 251.

� The Linux distribution must operate correctly on the base PC. New adapters, various
power management options, new USB chips, new display parameters, new disk
technology, and other technology-related items might not work correctly with all Linux
distributions or might require extra Linux device drivers or Linux updates.

� Some SCSI tape drives may be used with zPDT. They can be used through Linux utility
functions or used directly by the z System operating system (where they appear to be IBM
3420, 3480, 3490, or 3590 tape drives). Not all SCSI tape drives are usable by zPDT. The
usability depends on the exact model, the exact firmware level, the exact SCSI adapter
used, and the firmware options that are set in the drive. IBM has used a variety of different
SCSI drives for testing, but IBM cannot predict whether your SCSI drive will work with
zPDT. If this is important to you, we strongly suggest that you discuss your requirements
with your zPDT provider. See Chapter 14, “Tape drives and tapes” on page 271 for more
information.

2.5 Using older z System architectures

zPDT does not have a facility to emulate older z System architectures. For example, the
current release (zPDT Version 1 Release 8) is at the z System z14 level. It cannot be set to a
z System 196 level or a z10 level. Providing a switchable architectural level facility would
result in reduced performance and the product developers are unwilling to make this tradeoff.

If you need to test software under older z System architectures (and older z/OS releases) you
must retain older versions of zPDT. Older zPDT releases might or might not work correctly
with the latest Linux distributions and IBM cannot provide assistance in this area. In the
general case, you must retain older PC hardware, older Linux releases, older z/OS releases,
and older zPDT releases if you want to consistently run your software in older operating
environments. IBM does not have a way for distributing older zPDT releases or older AD-CD
releases.

2.6 zPDT Components

At the highest level, zPDT has or needs the following components:

� A base Linux system. This is not provided with zPDT. The user must acquire this directly.

� A suitable 3270 emulator (which is usually run on the same personal computer that is
hosting zPDT, although this is not required). At least one 3270 emulator (x3270) is
provided with some Linux distributions, but not with others. Other modern 3270 emulators
might be used, but verification of their operation with zPDT is up to the user. The zPDT
package does not provide a 3270 emulator.

� The hardware USB token18, which is required for zPDT operation. (An alternative is a
license server; see Chapter 8., “zPDT licenses” on page 149 for a larger discussion of the
options.)
16 IBM zPDT Reference and Guide

� A zPDT program package file.19 Within this file are the following items:

– Two prerequisite SafeNet driver programs for communicating with the 1090 or 1091
tokens. These two drivers are provided with zPDT and only these provided versions
may be used. Other versions available from the web should not be used even if they
appear to be a later level. These two programs are installed even if a remote license
server will be used.

– A program for communicating with Gen2 tokens or license servers.

– The Red Hat (RHEL, Fedora) version of zPDT.

– The Novell (SLES, openSUSE) version of zPDT.

– The Ubuntu version of zPDT.

– An installer program that displays a license, installs the prerequisite drivers (if not
already present), and then selects and installs the correct zPDT version.

– Components that provide remote license and identity management functions.

� z System software, such as z/OS, is not part of zPDT. It must be licensed and acquired
separately.

The remainder of this section discusses the components in zPDT (after it is installed). The
discussion is the same whether the Red Hat, Novell, or Ubuntu versions are used and
whether the ISV or zD&T package is used. Different versions of zPDT (for Red Hat, Novell,
and Ubuntu) are currently provided within the zPDT “package” due to slightly different library
levels in these environments.

2.6.1 zPDT elements

The executable elements of the zPDT package (normally placed in /usr/z1090/bin on the
underlying Linux system) are in three general categories:

� z System operation, which is provided by a primary zPDT program module and several
associated DLL modules.

� Several device emulation modules, known as device managers.

� Multiple command modules to configure, start, stop, and manage zPDT operation. These
are executed as simple Linux commands, working from a Linux terminal window.

zPDT installation also creates /usr/z1090/man and /usr/z1090/uim directories. The uim
directory contains two small files that are used to provide a consistent serial number for z
System compatibility. The man directory contains normal Linux man pages for zPDT.

The first startup of zPDT creates a number of subdirectories (placed in the z1090
subdirectory) in the user’s home directory.20 Briefly, these subdirectories are as follows:

� cards, lists: May be used to provide input files to an emulated card reader or output from
an emulated printer. If not used, they are empty.

� disks, tapes: May be used to hold emulated disk or tape volumes, but these
subdirectories are typically not used for anything. The emulated volumes are usually
placed elsewhere, in other Linux file systems.

18 This is a Gen1 1090 or 1091 token, or possibly a future Gen2 token.
19 There are two separate program file packages, one for 1090 (ISV) systems and one for 1091 (zD&T) systems.
20 When zPDT is started, a z1090 subdirectory is created in the home directory of the user (if it does not already

exist). The subdirectories discussed here are under the z1090 subdirectory.
Chapter 2. Function, releases, content 17

� logs: Used by zPDT to hold various dumps, logs, and traces. zPDT partly manages the
contents of this subdirectory. The contents of this directory are important if it becomes
necessary to investigate a zPDT failure.

� configs, pipes, srdis: Used for zPDT internal processing; do not erase or alter the
contents of these small subdirectories.

Minor use of the /tmp file system occurs during zPDT installation, AD-CD installation,
aws3270 device manager startup, and optionally for STP logs.

Finally, a device map (devmap) is needed for zPDT operation. This element is not provided
by zPDT, but must be created by the user.

The emulator modules that provide z System functionality are not further described. They are
not directly touched by the zPDT user. The device managers are described in 3.3, “Manager
stanzas” on page 40. The syntax of the zPDT commands is described in Chapter 4, “zPDT
commands” on page 53. Practical uses of zPDT commands, device managers, and devmaps
are explained, at length, throughout the rest of this document.

2.6.2 Memory

The complete zPDT environment exists in Linux virtual memory. Linux is aggressive in
allocating real memory frames to virtual memory pages and disk file data using its own
(Linux) judgment about what is the best use of real memory. The situation is complex when
Linux caching of disk I/O is considered, and disk caching is a very important element of Linux
performance.

We consider 8 GB of memory (in a PC) to be the minimum for zPDT usage, perhaps for z/VM,
z/VSE, or Linux for z Systems. An 8 GB machine is usable for a modest z/OS system.
Memory might be much larger. For example, one of the zPDT test environments uses a
256 GB PC and runs multiple 16-64 GB z/OS images.

It is important to understand that zPDT simply exists in Linux virtual memory. We might
informally say something like, “With an 8 GB machine we can allocate 1 GB to Linux and
7 GB to zPDT,” but such statements must not be taken literally. zPDT does not physically
partition PC memory in any way. If we inspected the machine in this example at a random
time, we might find 1.2 GB owned by the primary zPDT module, 0.2 GB owned by
recognizable core Linux functions, 3.8 GB used for disk data cache, 0.2 used by various other
processes (such as zPDT device managers and so forth) and the rest unassigned. A few
seconds later, the usage statistics might be different.

We suggest that the PC memory size be at least 1 GB larger than the sum of all concurrent
zPDT-defined z System memory. More is better because it allows the Linux disk cache to
perform better. A more typical arrangement might have PC memory at least twice the size of
the defined z System memory. The primary goals are to (1) avoid Linux paging that stalls
zPDT operation, and (2) to allow Linux to have an effective disk cache. There is no easy way
to directly manage either of these goals. They are indirectly managed by providing ample PC
memory.

2.6.3 Disk space

The disk space for the zPDT executable programs and control files is relatively small.21 The
disk space for emulated z System volumes is not small and some planning is needed. The

21 It is typically less than about 60 MB.
18 IBM zPDT Reference and Guide

space for emulated disk volumes can be calculated accurately, while the space for emulated
tape volumes depends completely on the amount of data on the emulated tape volumes.

For practical purposes, we consider only 3390 emulated disk volumes. For the standard 3390
models, the required space is as follows:

3390 model Approximate space required Exact space required
 3390-1 .95 GB 948,810,752 bytes
 3390-2 1.9 GB 1,897,620,992 bytes
 3390-3 2.8 GB 2,846,431,232 bytes
 3390-9 8.5 GB 8,539,292,672 bytes

1 3390 cylinder 852,48022 bytes

The per cylinder space may be used to calculate the disk space needed for nonstandard
3390 sizes.

Tape sizes reflect the size of the data written on the tape with a very small additional space
(less than 1%) needed for awstape control blocks.23 (Optionally, the awstape device manager
can compress these files, often greatly reducing the amount of space used.)

2.6.4 LAN adapters

We consider only Ethernet adapters in this discussion.24 A Linux-based zPDT system can
use more than one LAN adapter, although this is unusual. We must consider several “users”
of LAN adapters in the base machine:

� Linux is normally a LAN user. Remember that the emulated local 3270 connections (via
the aws3274 device manager) are connected through Linux TCP/IP.25

� z/OS (or z/VM, or z/VSE) TCP/IP, if used, needs a LAN adapter. This usage may be in
one of two modes:

– Non-QDIO mode, in which an older IBM 3172 control unit (or LAN Channel Station,
LCS) is emulated. This mode is not recommended.

– In QDIO mode, which is recommended.

� z/OS (or another operating system) might use a LAN for SNA connections, although this is
not tested or supported for zPDT. This requires non-QDIO mode.

A LAN adapter may be shared between zPDT OSA and the base Linux system with the
following rules and restrictions:

� A given LAN adapter may be used for OSA-Express emulation in either QDIO or
non-QDIO mode, but not both. The selection of QDIO or non-QDIO is made in the devmap
definitions; the awsosa device manager is used in both cases.

� A given PC ethernet adapter may be used by both OSA (either mode) and base Linux
connections. For example you can use Linux Telnet, FTP, web browser (or server), the
aws3270 device manager, and so forth at the same time that zPDT OSA is using the
same Ethernet adapter.

� A logical connection between the base Linux TCP/IP and OSA TCP/IP can be made only
by using an intermediate virtual interface (which we describe as a tunnel).

22 Each volume has an additional 512 bytes overhead.
23 The actual overhead is 6 bytes for each block written (including a tape mark, which counts as a block).
24 Wireless adapters are also Ethernet adapters.
25 If local x3270 windows are the only TCP/IP functions used under the base Linux, then the localhost connection

(127.0.0.1) can be used and this does require a hardware LAN adapter.
Chapter 2. Function, releases, content 19

� Remember that the aws3274 device manager (which accepts TN3270e clients and
emulates local, channel-attached 3270 devices) does not use OSA.

Wireless LAN
Wireless LAN connections may be used with zPDT, but considerations are involved:

� Wireless usage almost always involves DHCP. Standard z/OS is not a DHCP client. This
means the wireless functions are between a remote client and the base Linux. In practice,
this means they are used with 3270 emulators connected to the aws3274 device
manager. The MVS console and up to 31 TSO users might be connected this way.

� Temporarily dropping a link is common with wireless connections and usually has minor
effects for typical mobile computer users. Dropping a link that runs the MVS console, for
example, produces more than a minor effect. Some Linux wireless environments allow
considerable time (many seconds) for a dropped wireless connection to reconnect. This
can create unexpected timeouts for z/OS functions, depending on the exact state of the
system when the connection drop happened.

Informally, we have found wireless connections practical when used in the same room (such
as a classroom) where dropped connections are unlikely.

2.6.5 Device maps

A device map, commonly known as a devmap, is a simple Linux text file. You might have
many devmaps, each a separate Linux file. One devmap is specified when zPDT is started;
you can use a different devmap each time a zPDT instance is started. A devmap specifies the
z System characteristics to be used and the device managers (with their parameters) to be
used for an instance of zPDT operation.

The following devmap describes a simple z System:

[system]
memory 5000m # emulated z System to have 5000 MB memory
3270port 3270 # tn3270e connections specify this Linux port
processors 1 # create one CP

[manager]
name awsckd 0008 # define two 3390 units
device 0a80 3390 3990 /z/SARES1
device 0a81 3390 3990 /z/WORK02

[manager]
name awstape 0020
device 0580 3480 3480 /z/SAINIT #tape drive with premounted tape volume
device 0581 3480 3480 #tape drive with no premounted volume

[manager]
name aws3274 0300 # define two local 3270s
device 0700 3279 3274
device 0701 3279 3274

Device managers (such as awsckd, awstape, and aws3274 in the example) are the zPDT
programs that emulate various device types. The number after the device manager name is
an arbitrary hexadecimal number (up to four digits) that must be different for each name
statement.
20 IBM zPDT Reference and Guide

Device statements in the devmap specify details such as a device number (“address”), device
type, the Linux file used for volume emulation, and various other parameters. The volume
mounted at an address can be specified or changed with the awsmount command while zPDT
is running. In this example, the emulated tape volume in Linux file /z/SAINIT is already
mounted when zPDT is started. We could change the volume (while zPDT is running) with an
awsmount command that specifies a different Linux file. (The files must be in the proper
emulated format, of course.) This corresponds to changing a tape volume on a tape drive or
changing a disk “pack” as was possible in earlier years.

2.6.6 Linux directory structure

A Linux user running zPDT has the following default directory26 structure in Linux:

Directory path Purpose
/home/<userid>/z1090/logs/ various traces are placed here
/home/<userid>/z1090/configs/ (internal 1090 functions)
/home/<userid>/z1090/disks/ emulated disk volumes
/home/<userid>/z1090/tapes/ emulated tape volumes
/home/<userid>/z1090/cards/ input to the emulated card reader
/home/<userid>/z1090/lists/ emulated printer output
/home/<userid>/z1090/pipes/ (internal 1090 functions)
/home/<userid>/z1090/srdis/ (internal 1090 functions)

/usr/z1090/bin executable 1090 code, scripts
/usr/z1090/man minor documentation
/usr/z1090/uim identity manager files

Notice that different Linux userids would have different default 1090 directories and files.
1090 operation is sensitive to the Linux userid being used. The use of the default logs, lists,
and configs directories is mandatory for some operations, but is optional for other files such
as emulated disk and tape volumes. Emulated devices have default file names, based on the
assigned device number, but can use specified file names instead of the default file names.
(We always use specified file names in our examples. None of our examples use the default
disk and tape subdirectories and these are typically empty.)

These subdirectories are created in the current home directory (if they do not already exist)
when zPDT operation is first started.

We suggest using a separate Linux file system for emulated volumes. This insulates them
from Linux reinstallations and also insulates both the emulated volume file system and the
base Linux file system (or systems) from unplanned growth in each other. For these reasons
most of the examples in this book assume that all emulated I/O files are placed in the /z
directory.27 In our case, when we installed Linux, we created a separate partition (with a large
amount of disk space) that is mounted at /z. We use this to hold all the emulated volumes.
The cards tapes, and lists directories, in the default directory path, are seldom used in
typical operation.

26 These names are subject to the discussion about the home directory. You should substitute the appropriate home
directory name for the /home/<userid> portions of these names. A home directory could be almost anywhere in the
root file system or in another file system. Our examples are based on the default form used by current Linux
distributions.

27 The mount point name, /z in our examples, is completely arbitrary.
Chapter 2. Function, releases, content 21

2.6.7 zPDT control structure

The general structure of zPDT control files is shown in Figure 2-2.

Figure 2-2 Control files: general structure

zPDT z System operation is started with the awsstart command, issued from a Linux terminal
window. A parameter of this command points to a device map or devmap. As mentioned
earlier, this is a simple Linux text file containing specifications for the z System machine.

2.7 ISV zPDT and zD&T zPDT differences

The zPDT package available to independent software vendors (ISVs) and IBM internal users
requires a Gen1 1090 token (or a remote license manager with an equivalent license). It will
not function with a 1091 token. All zPDT functions are available with a 1090 token except that
tokens larger than an L03 (three licenses) are not available.28

All zPDT functions are available with a Gen1 1091 token (or a remote license manager with
an equivalent license) but some functions require an additional license. The zD&T product
requires a 1091 token and will not function with a 1090 token. Users of zD&T who require the
coupling facility must purchase licenses features that enable that function.

The license terms and conditions for the two packages are quite different and are not
addressed in this document. For complete licensing terms, contact your IBM representative,
your zPDT supplier, or refer to the license documents supplied with your copy of zPDT.

This document primarily discusses Gen1 1090 tokens. However, other than the differences
mentioned here and in Table 2-3, the document also applies to Gen1 1091 tokens (and
equivalent remote license functions).

Table 2-3 1090 and 1091 comparisons

awsstart xxxxx devmap

memory size
device file names
device file names
.....

text file

files containing
emulated devices

operational zPDT

28 However, more than one 1090 token may be used to provide more than three zPDT licenses.

ISV use - Gen 1 1090 tokens, or equivalent zD&T use - Gen1 1091 tokens, or equivalent

1090 token only; 1091 token not usable
(or equivalent remote licenses)

1091 token only; 1090 token not usable
(or equivalent remote licenses)

Maximum of 8 CPs (with multiple tokens) Maximum 8 CPs (with multiple tokens or a “large”
token)

Coupling Facility usage (under z/VM) Coupling Facility usage (under z/VM) only with
additional license feature
22 IBM zPDT Reference and Guide

2.8 zPDT releases

There have been multiple releases of zPDT over the past several years. The following
sections summarize significant changes. In the tables that follow, the information under
“Required minimum Linux levels” or “Tested Linux Levels” is important. Lower level Linux
systems should not be used when running the associated zPDT release. Other Linux
distributions with libraries at an equivalent level (or later) might be used, although only the
other listed distributions were tried by the developers.

2.8.1 Version 1 Release 8 (December 2017)

Characteristics are listed in Table 2-4.

Table 2-4 Version 1 Release 8.

1, 2, or 3 licenses in token. No way to order larger
tokens.

Tokens with various numbers of licenses are
available

Installed rpm or deb name is z1090 Installed rpm or deb name is z1091

ISV zPDT and zD&T cannot be installed on the same machine

“Standard” z/OS AD-CD system Might have slightly modified z/OS AD-CD
system; possible delay for most current z/OS

Most zPDT commands are the same. A few have 1090 or 1091 versions.

Functional modules are installed in /usr/z1090/bin with additional materials in /usr/z1090/man and
/usr/z1090/uim. zPDT instance files are created in a subdirectory named z1090 in the Linux zPDT
userid home directory. There is no /usr/z1091 or ~/z1091 usage.

z/VSE and z/VM available (with proper license) z/VSE not available. z/VM available for limited
use only for use with the optional Coupling
Facility license.

z/TPF not available at the time of writing. z/TPF availability can be requested.

Installation and operational commands are
as described in this book. (ITC offers additional
interfaces with their uPDT package).

zD&T provides additional installation and
operation programs and interfaces.

ISV use - Gen 1 1090 tokens, or equivalent zD&T use - Gen1 1091 tokens, or equivalent

Characteristic Version 1 Release 8

Date released December 2017

Initial zPDT driver level 51.xx

z System architecture level z14

Linux levels used to build zPDT release RHEL 7.3, SLES 12 SP1, Ubuntu 16.04.2 LTS

Tested Linux levels
(Earlier levels should used with caution)

RHEL 7.0, 7.1, 7.2, 7.3 (do not use 6.x)
openSUSE 13.1, Leap42.1
SLES 12 SP1 (informally, Fedora 25)
Ubuntu 16.04 LTS

Tested z/OS levels 2.1, 2.2, 2.3
Chapter 2. Function, releases, content 23

This release includes the following key features:

� The architecture level (that is, the z System instruction set) corresponds to IBM z14
machines. This involves significant enhancements to zPDT. This includes defaulting to
zArchitecture for IPL operation.

– A non-standard option allows IPLing in ESA/390 mode, but operation in z14 mode
otherwise. See 13.3, “cpuopt statement” on page 252 for details.

� zPDT licenses are no longer required for zIIPs, although the zIIPs count toward the
maximum of eight processors in a zPDT instance. zAAPs and IFLs require zPDT licenses.
(In principle, zAAPs no longer exist with z14 machines.) The number of zIIPs cannot
exceed the number of CPs.

� Coupling functions are updated to the CFCC 22 level.

� The awsckd device manager (that emulates 3380 and 3390 operation) has been
reworked.

– The awsckd device manager emulates an IBM 2107 control unit in place of the 3990
control unit in prior releases and newer CCW operations are handled correctly.

– MIDAW operation is included

� I/O counts are available with the awsstat command. This data can be especially useful
when emulated disk volumes are spread among devices with very different performance
characteristics.

� The awsosa device manager corresponds approximately to the OSA-Express5 level.

– The awsosa device manager supports promiscuous mode Ethernet, as needed for
KVM operation.

– Jumbo frames (up to 8992 bytes) are supported.

� Deprecated commands/scripts are removed: ldk_server_config (replaced by
clientconfig), LDKc_setup.sh (replaced by gen2_init).

z/VM used during development 6.2, 6.3, 6.4 (not all functions)
(Service is needed by 6.2 and 6.3 to use GA8)

Tested z/VSE levels 6.1

Tested Linux for z System level SLES 11SP3, 12SP1; RHEL 7.1, 7.2
Fedora 23, Ubuntu 16.04 LTS.
zKVM v1.1.1 SP6, v1.1.2 SP4

Machines used for testing Lenovo W520, W530, W540, P70;
IBM System x 3850, IBM System x 3500 (M2-M5),
IBM System x 3650 (M2-M5), IBM System x
3755-M3

Virtual environments tested VMware ESXi 5.1 (guests RHEL 7.2, SLES 12,
Ubuntu 16.04), KVM (guests Fedora 23, Ubuntu
16.04 LTS)

Characteristic Version 1 Release 8
24 IBM zPDT Reference and Guide

2.8.2 Version 1 Release 7 (March 2017)

Characteristics are listed in Table 2-5.

Table 2-5 Version 1 Release 7.

This release includes the following key features:

� Cryptographic adapter level corresponds to the relevant features in current z Systems.

� New zPDT commands to create and inspect labels of emulated tape volumes.

� Support for operation under Ubuntu Linux, but only when a remote zPDT license manager
is used.29 At the time of writing, a Ubuntu base Linux had not been tested with more than
three zPDT CPs.

� Fixes for SafeNet operation with recent Linux levels.

� z/TPF operation (limited availability)

� E-mail notification of pending license expirations.

� A “software” license server (with no hardware token involved) for limited use.30

� Support for a new type of zPDT license servers and tokens.

� Command-line interfaces to set remote license server parameters (as opposed to
interactive or graphic interfaces).

� Improved internal design to reduce “hacking” exposures.

� Improved messages for installation activities.

� CFCC 21 Coupling Facility.

Characteristic Version 1 Release 7

Date released March 2017

Initial zPDT driver level 49.xx

z System architecture level z13 GA2

Tested Linux levels
(Earlier levels should used with caution)

RHEL 6.3, 6.6, 7.0, 7.1
openSUSE 12.3, 13.1, Leap42.1
SLES 11 SP2, 11SP3
Ubuntu 16.04LTS

Informal Linux levels used during development Fedora 25

Tested z/OS levels 1.13, 2.1, 2.2

z/VM used during development 6.2, 6.3, 6.4 (not all functions)

Tested z/VSE levels 6.1

Tested Linux for z System level SLES 11SP3, 12SP1; RHEL 7.1, 7.2
Fedora 23, Ubunty 16.04LTS
zKVM v1.1.0, v1.1.1

Machines used for testing Lenovo W520, W530, W540, W700;
IBM xSeries 3500-M1 to 5, 3650-M1 to 5, 3755-1,3

Virtual environments tested VMware, KVM

29 This restriction existed at the time of writing, due to the unavailability of a Ubuntu version of the SafeNet token
support modules.

30 At the time of writing, this function is only for zD&T use.
Chapter 2. Function, releases, content 25

� The maximum number of zPDT devices has been expanded from 1022 to 2048. See
13.19, “Many zPDT devices” on page 263 for a discussion of this topic.

� zAAP speciality processors may be configured with this zPDT release although, strictly
speaking, they should not exist in a z13 system. The user must determine the usefulness
of zAAPs in this situation.

� zPDT is no longer tested for zBX usage.

� The leap second offset has been set to 0. (It was set to 25 or 26 in the GA6 release.)

2.8.3 Version 1 Release 6 (March 2015)

Characteristics are listed in Table 2-6.

Table 2-6 Version 1 Release 6.

This release includes the following key features:

� New instructions corresponding to the architecture of the IBM z13 series.

– DFP Packed Conversion Facility
– Load/Store-on-condition Facility 2
– Load-and-Zero-Rightmost-Byte Facility
– CPACF supports MSA5 (random number generation)
– Vector Facility (SIMD) with 139 new instructions and 32 registers of 128 bits.

� New cryptographic adapter levels corresponding to CEX5S:

– Maximum number of domains (per emulated adapter) is 16.
– Format Preserving Encryption instructions

� DCP Assist Crypto Facility (CPACF) updates.

� Support for the System Time Protocol (STP). This involves Linux daemons running on
multiple zPDT hosts (multiple PCs) and is typically used in a basic sysplex environment.

� Improved messages for installation activities

Characteristic Version 1 Release 6

Date released March 2015

Initial zPDT driver level 49.xx

z System architecture level z13

Tested Linux levels
(Earlier levels should used with caution)

RHEL 7.0, SLES 11 service pack 3
openSUSE 13.1, Fedora 20

Informal Linux levels used during development openSUSE 13.1, SLES 11 SP3
Fedora 20, RHEL 7.0

Tested z/OS levels 2.1, 1.13

z/VM used during development 6.2, 6.3 (not all functions)
VM APAR VM65007 required for 6.2

Tested z/VSE levels 5.1, 5.2

Tested Linux for z System level SLES 11 SP3, RHEL 6.2, 6.4

Machines used for testing Lenovo W520, W530, W540; IBM xSeries
3500-M3, 3650-M3

Virtual environments tested VMware, zBX, KVM
26 IBM zPDT Reference and Guide

� CFCC 20 Coupling Facility, service level 16

� Support for read-only DASD volumes.

� Support for shared DASD volumes (across multiple PCs) in an NFS environment.

� zPDT has been tested in a virtual environment provided by KVM.

� zAAP speciality processors may be configured with this zPDT release although, strictly
speaking, they should not exist in a z13 system. The user must determine the usefulness
of zAAPs in this situation.

2.8.4 Version 1 Release 5 (February 2014)

Characteristics are listed in Table 2-7.

Table 2-7 Version 1 Release 5

The major new element in this release is the processing of encrypted and protected AD-CD
releases. This function restricts the usage of IBM z System operating systems, packaged in
the AD-CD format, to zPDT systems. The operational details needed to install the new
AD-CD releases are described in Chapter 6, “AD-CD installation” on page 109.

This release includes the following other features:

� New cryptographic adapter levels corresponding to CEX4:

– Export triple DES (TDES) key under an AES transport key
– Diversified key generation cipher block chaining (CBC) support
– Initial PIN encrypting key (IPEK) support
– Remote key export (TKX) key wrapping method support
– Integration of User Defined Extensions (UDX) into CCA
– (CEX4 also matches CEX3 and might be identified as CEX3 by ICSF)

� CP Assist Crypto Facility (CPACF) updates

Characteristic Version 1 Release 5

Date released February 2014

Initial zPDT driver level 47.xx

z System architecture level EC 12 GA 2

Required minimum Linux level
(Earlier levels should not be used)

RHEL 6.0
openSUSE 11.3
SLES 11 service pack 2

Informal Linux levels used during development openSUSE 11.3, 11.4, 12.1
Fedora 17, 19

Tested z/OS levels 2.1, 1.13, 1.12

z/VM used during development 6.2, 6.3 (not all functions)

Tested z/VSE levels

Tested Linux for z System level

Machines used for testing Lenovo W520, W530; IBM xSeries 3500-M3,
3650-M3

Virtual environments tested VMware, zBX
Chapter 2. Function, releases, content 27

� New installation commands and techniques for AD-CD z/OS 2.1 involving encrypted
distribution of z/OS volumes

� New token license update commands

� General performance improvements

� New support for SCSI-attached 359x tape drives

� CFCC 19 Coupling Facility level

2.8.5 Version 1 Release 4, and fix pack 1 (December 2012, May 2013)

Characteristics are listed in Table 2-8.

Table 2-8 Version 1 Release 4

Version 1 Release 4 plus a “fix pack” included the following changes:

� The relevant instruction set for the z System EC 12 processor is included. This is a major
change for the base zPDT element. This includes significant new EC 12 functions:

– Transaction Execution Facility
– Runtime Instrumentation Facility
– Decimal Format Conversion
– 2 GB Page Frames
– The flash memory function of EC 12 systems is not provided by zPDT at this time.

� 1090 and 1091 tokens may no longer be used interchangeably. A 1090 token works only
with the zPDT package intended for 1090 tokens, and a 1091 token works only with the
zPDT package intended for 1091 tokens. The IBM Rational license manager may be used
in conjunction with a 1091 token.

� Tokens with more than 3 zPDT licenses may be used with 1091 systems that are enabled
for such usage.

Characteristic Version 1 Release 4

Date released December 2012, fix pack May 2013

Initial zPDT driver level 45.18

z System architecture level EC 12
(includes upgrades for z/OS 2.1)

Required minimum Linux level
(Earlier levels should not be used)

RHEL 6.1
openSUSE 11.3

Other Linux levels used during development (openSUSE 11.3, 12.1, 12.2)
SLES 11 SP2
(Fedora 15, 17)

Tested z/OS levels 1.13, 1.12

z/VM used during development 6.1, (partial use of 6.2)

Tested z/VSE levels

Tested Linux for z System level

Machines used for testing Lenovo W520, W530; IBM xSeries 3500-M3,
3650-M3

Virtual environments tested VMware, zBX
28 IBM zPDT Reference and Guide

� Two general virtualized environments may be used with zPDT. These are discussed in
Chapter 18, “Virtualization” on page 311.

� Although z/OS 2.1 had not been released at the time of writing, this zPDT release is
expected to be compatible with it.

� Additional command scripts (aws_bashrc and aws_sysctl) are available to simplify zPDT
installation. Also, there is now a 1091ver command to match the older 1090ver.

� The integrated consoles (3270 and ASCII) that are available with an HMC may be
emulated with zPDT.

� A new command, z1090term, provides an ASCII console that can be connected to the
integrated ASCII console interface.

� 3390 (and 3990) emulation has been upgraded to the level required for z/OS 2.1
(expected to be released in 2H2013).

� The remote license server that allows the USB keys to be installed in a central location
has been improved.

� This release of zPDT has been built on RHEL 6.0, 6.1, and openSUSE 11.3 libraries. It is
not usable with RHEL 5.x bases and is probably not usable with openSUSE 10.x bases.

� The cryptographic adapter functions provided by zPDT are now at the Crypto Express 4
(EC 12) level (CEX4C).

� A new level of the Coupling Facility code is included, which is level CFCC Level 18.

� zPDT includes a migration utility that may be used to copy 3390 volumes from a remote
z/OS or z/VM system. This has been updated to function with older DASD on the “real” z
System.

� Several minor fixes are included in the GA4 release and fix pack level.

� Various performance improvements are included.

2.8.6 Version 1 Release 3 (March 2012)

Characteristics are listed in Table 2-9.

Table 2-9 Version 1 Release 3

Characteristic Version 1 Release 3

Date released March 2012

Initial zPDT driver level 43.20

z System architecture level z196
(not usable for z/OS 2.1)

Required minimum Linux level
(Earlier levels should not be used)

RHEL 5.4
openSUSE 11.2
SLES 11

Informal Linux levels used during development openSUSE 11.3, 11.4
Fedora 12

Tested z/OS levels 1.13, 1.12, 1.11

z/VM used during development 6.1, 5.4, 5.3

Tested z/VSE levels 5.1, 4.3, 4.2

Tested Linux for z System level SLES 10, SLES 11, RHEL 5.2, RHEL 5.4
Chapter 2. Function, releases, content 29

Version 1 Release 3 (commonly known as GA3) included the following changes:

� The relevant instruction set for the z System 196 processor is included. This is a major
change for the base zPDT element.

� A remote license server allows the USB keys to be installed in a central location. Multiple
standard USB keys may be used (each with a maximum of three CP licenses) or
nonstandard keys containing more licenses. Associated with this function is a Unique
Identity Manager (UIM) that provides the same consistent serial number for the z System
CPs in a given Linux machine. Details are included in “zPDT licenses” on page 149.
Several new commands are provided to manage these functions.

� This release of zPDT is built on RHEL 6.0, 6.1, and openSUSE 11.3 libraries. It is not
usable with RHEL 5.x bases and is probably not usable with openSUSE 10.x bases.

Various LSB warnings (Linux Standard Base) no longer appear during installation.

� The device map (devmap) used to define an instance of zPDT operation may now include
Linux commands, with a method to control the timing of these commands. This function
may be used to automate zPDT startup among other uses. In addition, environmental
variables, include statements, and message statements are permitted in the devmap.

� The cryptographic adapter functions provided by zPDT are now at the Crypto Express 3
level.

z/OS releases earlier than 1.12 might require the fixes for APAR OA29839 to be applied.

� Performance enhancements are included. These are most noticeable for processor-bound
programs, including the startup of the z/OS IBM WebSphere® Application Server.

� The license server function associated with token processing has been expanded to add
significant security options. This is described in Chapter 8, “zPDT licenses” on page 149.

� A new level of the Coupling Facility code is included, which is level CFCC D93G R17
SL4.8. This CFCC level is considerably larger than the CFCC included in the previous
zPDT release and a larger z/VM guest is needed to use it. (We now suggest a z/VM guest
size of at least 512 MB for a CFCC guest.)

� The Linux /etc/profile.local and /etc/profile files no longer require modification.

� The handling of LAN interfaces has been expanded to handle the new LAN interface
names being used in later Linux releases. This involves changes to the output from the
find_io command and changes to parameters for the awsosa device manager. These
changes might require alternations in prior devmaps to match new path assignments.

� The zPDT stop and start commands are extended to include stop all and start all.

� New RAS functions improve access to the USB key in rare cases where problems have
been reported. The methods for starting the token interfaces during Linux booting have
been enhanced.

� The maximum number of CPs (or the total of CPs, zIIPs, zAAPs, and IFLs) for a zPDT
instance is now specified as eight. This does not indicate that an 8-way SMP is practical
for zPDT, but indicates the maximum size of underlying zPDT control functions.

� A stricter statement of underlying PC processors (“cores”) now exists. There must be at
least one more core than the number of zPDT CPs in the largest zPDT instance running.31

Machines used for testing Lenovo W520, W530; IBM xSeries 3500-M3,
3650-M3

Virtual environments tested None

Characteristic Version 1 Release 3
30 IBM zPDT Reference and Guide

An exception exists for a single core, which may be used with reduced zPDT
performance.

� The use of USB 3 ports (for the USB key) is now supported.

� The 32-bit version of zPDT, previously available only within IBM, is no longer available.

� The SecureUpdateUtility command must be run from the /usr/z1090/bin directory and
must be run as root.

� Emulated DASD (3380, 3390) may be shared between instances of zPDT on the same
PC. The performance of the zPDT locking involved in this sharing has been enhanced.
(Note that this does not affect the need for sharing z/OS systems to provide serialization
for access to the DASD.)

� zPDT includes a migration utility that may be used to copy 3390 volumes from a remote
z/OS or z/VM system. The z/OS version of this utility previously included an automatic
restart function that attempted to restart at the point of failure if a migration transfer was
interrupted. This function has been removed. If a volume migration is disrupted, it must be
started again.

� When zIIPs or zAAPs are defined in a device map, at least one “cp” definition must
precede the zIIP and/or zAAP in the processors statement.

� The output of the token command has been expanded to provide both zPDT license
information and CP serial number information.

� Linux environmental variables may be used in device map specifications.

� Several minor commands have been added to permit an installation to administer zPDT
tokens and license server configurations without switching to the Linux root userid.

� RDzUT customers may use more than three zPDT CPs, assuming sufficient zPDT
licenses are available.

� The specification of ulimit -c unlimited for the zPDT operational environment might be
reconsidered. This might be relevant for very large zPDT instances with, for example,
32 GB and larger z System storage specified.

2.8.7 Version 1 Release 2 (June 2011)

Characteristics are listed in Table 2-10.

Table 2-10 Version 1 Release 2

31 Previous zPDT releases could be used with the number of cores equal to the number of CPs in the largest
instance. Changes to Linux kernel operation have dictated this change for zPDT. It might still be possible to run
with the number of cores equal to the number of CPs in the largest instance, but this might not always be
successful. In particular, running a two-CP instance on a PC with two cores might produce major performance
problems.

Characteristic Version 1 Release 2

Date released December 2010

Initial driver level 41.21

z System architecture level z10, ALS3

Required minimum Linux level
(Earlier levels should not be used)

RHEL 5.3
openSUSE 10.3

Informal Linux levels used during development openSUSE 11.1
Fedora
Chapter 2. Function, releases, content 31

Version 1 Release 2 (June 2011), known as the “GA 2.2 release,” included the following
updates. They are listed here as background information:

� zPDT has been adapted to later C libraries. (The earlier libraries created problems for
recent Linux releases, such as Fedora 14.)

� Installation instructions are included to narrow the usage of an OSA emulation module that
runs SUID to root. (This helps resolve a security concern.)

� A new pdsUtil command is included for all editing of certain z/OS partitioned data sets
(PDS) while running only under the base Linux.

� Additional information is included about installation and usage options for emulated OSA
functions.

� The alcckd command has been changed such that it does not create Linux sparse files.

� The token command has been changed to display a token identifier of 1090 or 1091. The
1091 identifier indicates a token used for RDzUT.

� The Message Security Assist (“crypto instructions”) has been enhanced to match the
current z10 level, including 256-bit key operations. This enhancement includes MSA
levels 3 and 4.

� The serial number handling for a zPDT instance has been changed slightly. The change
affects what happens if more than one token is involved. This function involves a new
Linux-level service, uimd, provided by zPDT. (This function was completely redesigned for
Version 1 Release 3.)

� The installation instructions now specify that Linux 32-bit support functions are required.
(This is so, even if you are using a 64-bit Linux.)

� Notes have been added about the use of the Customized Offerings Driver (COD) system.

� The log file permissions (for zPDT logs) have been tightened.

� A new listVtoc command has been added.

� New directions are included for updating the /etc/sysctl.conf file during zPDT
installation.

� The z1090instcheck command has been updated.

2.8.8 Version 1 Release 1

Characteristics are listed in Table 2-11.

Tested z/OS levels 1.10, 1.11

z/VM used during development

Tested z/VSE levels

Tested Linux for z System level

Machines used for testing Lenovo W500, W510; IBM xSeries 3500-M2,
3650-M2

Virtual environments tested None

Characteristic Version 1 Release 2
32 IBM zPDT Reference and Guide

Table 2-11 Version 1 Release 1

Characteristic Version 1 Release 1

Date released October 2009

Initial driver level 39.11

z System architecture level z900, ALS3

Required minimum Linux level
(Earlier levels should not be used)

RHEL 5.2
openSUSE 10.3

Informal Linux levels used during
development

openSUSE 110.3
Fedora

Tested z/OS levels 1.9, 1.10

z/VM used during development

Tested z/VSE levels

Tested Linux for z System level

Machines used for testing Lenovo W500, W700, T61p; IBM xSeries 3850

Virtual environments tested None
Chapter 2. Function, releases, content 33

34 IBM zPDT Reference and Guide

Chapter 3. Devmaps

In this chapter, we provide reference information for zPDT device map entries (for device
managers). Information and guidance for using these device managers is found throughout
this book.

3.1 Device maps

A device map (devmap) consists of a system stanza, optional adjunct processor and/or
System Timer Protocol (STP) stanzas, and a variable number of device manager stanzas.
The descriptions in this chapter are intended to provide syntax and format information, but
are not intended to represent typical use. Usage information is provided in other chapters of
this document.

A device map is a simple Linux text file with an arbitrary file name. Many devmaps may exist,
but only one can be in use for an instance of zPDT. It is possible to have multiple zPDT
instances running, each under a different Linux userid. Each instance has its own devmap.
The remainder of this chapter assumes a single instance of zPDT is being used.

Create a devmap file in lowercase,1 except for parameters that specify Linux file names.
Devmap parameters begin in the first column of each statement. Stanzas are separated by
blank lines. A number sign (#) signals the beginning of comments in a line. The square
brackets shown in the descriptions below are part of the syntax and must be entered as
shown.

zPDT reads the specified device map when it is started. It does not process updates to the
devmap while zPDT is running. To alter the operational device map, zPDT must be stopped
and then started again with the revised devmap. However, the Linux file associated with
some devices (such as emulated tape drives or emulated disk drives) can be dynamically
changed while zPDT is operational by using the awsmount command.

3

1 This is not required by some elements of a devmap, which ignore upper or lowercase differences. Not all devmap
elements do this. To avoid problems, we suggest using lowercase for everything (except for Linux file names,
which are case-sensitive).
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 35

3.2 System stanza

A [system] stanza might look like this:

[system]
memory 6G # define 6 GB memory for z System
processors 1 # number of CPs
3270port 3270 # specify unique IP port number for aws3274
expand 0m # no expanded storage
ipl 0A80 “0A8200” # automatic ipl control (optional; not recommended)
cpuopt alr=on # optional function (defaults to on)
command 2 x3270 localhost:3270 #Linux command executed via the devmap

The memory statement specifies the size of the z System memory to be used for zPDT
operation. For performance reasons the real memory size of the PC should be at least one
gigabyte greater than the memory parameter.2 The number specified must be smaller than the
maximum shared memory value specified for Linux; this is set by the kernel.shmmax
parameter in Linux.3 For z/OS the memory value should normally be at least 4G; we typically
use 8G-12G but it might be much larger than this.4

You must have a processors statement unless your devmap is for a group controller. (See
Chapter 10, “Multiple instances and guests” on page 199 for more information about group
controllers.) The processors statement specifies the number of z System processors to be
used in this instance. The default is one. The processors statement is also used to indicate
the use of speciality PUs

as in the following examples (where cp indicates a normal, general-purpose CP):

processors 3 # three CPs. Assumed “cp” type
processors 3 cp cp ziip # two CPs and one zIIP; 2 licenses needed
processors 2 cp cp ziip # invalid. Two processors, but three definitions
processors 1 ziip # invalid. Must have at least one cp or ifl
processors 3 cp ziip ifl # one of each; needs 2 licenses
processors 3 ziip cp cp # invalid; cp must be first in the list
processors 4 cp cp cp ziip # only 3 licenses needed; ziip is “free”

The operands for the processors statement are the number of processors (typically 1, 2,
or 3)5, which (excluding ziip processors) cannot exceed the number allowed by the number of
licenses allowed by the zPDT token. The processors default to CPs; if you want speciality
processors, list them after the number as shown in the examples. The processor types are cp,
ziip, zaap, and ifl. If zIIPs or zAAPs are specified in the processors statement, at least one
CP must be listed first.6 Speciality SAP processors are not used.

The zAAP processors might not be useful in the z13 (or later) environment created by zPDT
GA6 or later. Starting with zPDT GA8, zIIP processors do not require a zPDT license
although they are included in the maximum of eight processors for a zPDT instance and are
included when determining the minimum number of PC cores needed.

2 This statement assumes a simple, dedicated environment. Other environments may require more planning for
effective memory use.

3 This kernel variable is specified by the instructions Chapter 5, “zPDT installation” on page 97.
4 The memory size may also be specified in megabytes by using a “M” suffix.
5 The number of processors for an instance has a maximum value of 8. This is usable only if multiple tokens are used

or nonstandard “high capacity” tokens are used, and may be limited to zPDT license terms and conditions.
6 The first processor type listed becomes the IPL processor; zIIPs and zAAPs cannot handle an IPL.
36 IBM zPDT Reference and Guide

The expand statement specifies the size of expanded storage for the z System machine. This
is optional. z/OS no longer uses expanded storage. However, some older releases of z/VM
still use it.

The 3270port statement specifies a port number to be used by the base Linux TCP/IP for the
aws3274 device manager. This must be an unused port and is typically a number greater
than 1024. We arbitrarily use port 3270 because it is easy to remember. A TN3270e emulator
connection to this Linux port appears as a local, channel-attached 3270 to the z System.

The ipl statement is optional and indicates that the ipl command is to be run automatically
when the zPDT operation is started. However, using this option might prevent you from
connecting 3270 emulator sessions at an appropriate time. We suggest using this option
carefully, if at all.

The cpuopt statement specifies optional parameters for the CPs. The following statement
should be used only by zD&T customers who have the optional Coupling Facility feature with
their license.

cpuopt zVM_CouplingFacility (no blanks in operand)
cpuopt zVM_Coupling (this abbreviation can be used)

In effect, the zVM_CouplingFacility function is always present for ISV zPDT systems. Other
cpuopt parameters produce non-standard configurations and are described in 13.3, “cpuopt
statement” on page 252.

The command statement specifies Linux commands that are automatically executed as part of
the zPDT operation. The syntax is as follows:

command phase-number [synchronous] command-string

The phase number is a digit from 1 to 4:

� Phase 1 means the command is to be executed before zPDT is started.
� Phase 2 means the command is to be executed after zPDT is initialized.
� Phase 3 means the command is to be executed just before zPDT is shut down.
� Phase 4 means the command is to be executed after zPDT is shut down.

By default, commands are executed asynchronously but may be forced to synchronous
operation. (This should seldom be used, since it forces other zPDT operations to wait until the
command is completed. For example, do not use it for x3270 startup.) The word command may
be abbreviated to cmd, and synchronous may be abbreviated to sync. If asynchronous
commands terminate while zPDT is still running, they are not automatically restarted. If they
are still running when zPDT is shut down they are sent a SIGTERM signal and should
terminate.

Additional system stanza options include these:

[system]
...
rdtserver 27000@our.server.acme.com # Rational License Server and port
int3270port 3271 # HMC-style 3270 integrated port
intASCIIport 3300 # HMC-style ASCII port

The rdtserver statement is used only with a zD&T system. It points to an IBM Rational
License Server used to supplement the zPDT license.7 A Rational License Server is not the
same as a zPDT remote license server and is not required for basic zPDT operation. The
operand can be a normal URL domain name or an absolute IP numeric address. Also, note

7 Contact your IBM marketing representative for more information about Rational licenses.
Chapter 3. Devmaps 37

the format with the port number placed before the address. Multiple rdtservers can be
specified by using a colon as the separator:

rdtserver 27000@server1.com:7777@server2.com

The int3270port and intASCIIport statements provide emulation for HMC-style integrated
terminal functions. The operand for each statement is a port number. After starting zPDT with
one (or both) of these operands you would start a 3270 emulator connected to the indicated
Linux port number or start z1090term8 connected to the indicated ASCII terminal port number.
These emulated terminals need not be on the base Linux system.

The 3270 terminal session associated int3270port function must9 be a 3270 model 3 (with a
32x80 screen). Any other 3270 terminal model might not connect properly. We found that, in
some cases, the smpppd rpm must be included in Linux for the connection to work. In
general, the int3270port function is used only when installing z/VM from the formal IBM
distribution media. It is not needed when using an AD-CD z/VM distribution.

A reasonable example of a system stanza could be as follows:

[system]
memory 8G
processors 2
3270port 3270
command 2 x3270 -model 4 -geometry +10+10 localhost:3270
command 2 x3270 -model 4 -geometry +1100+10 localhost:3270
command 4 echo 'zPDT operation has completed'

An ampersand (&) is not used after the x3270 commands in a [system] stanza. The geometry
parameters are optional, of course. They simply place the x3270 windows at convenient
places on the Linux desktop. Also, the x3270 sessions are automatically closed when zPDT
is shut down.

A devmap has several additional features 10 as follows:

� The use of Linux environmental variables
� The include function
� The message function

An example of each of these functions is included in the following devmap:

[system]
memory $(SIZE)
3270port 3270

[manager]
name aws3274 1234
device 0700 3279 3274
device 0701 3279 3274

8 See the command descriptions in Chapter 4, “zPDT commands” on page 53.
9 This “must” requirement appears to vary with z/OS releases. If you have a problem using the int3270 function, be

certain you are using the correct 3270 model type.

Tip: Our examples involving int3270port use 3271 as the port number. There is nothing
special about this port number; any unused port number could be selected. We found that
when attempting to connect a local x3270 session to int3270port the usual link of
“localhost:3271” sometimes does not work, while “127.0.0.1:3271” did work.

10 These features were added for special purposes. We have not seen much usage by typical zPDT users.
38 IBM zPDT Reference and Guide

include dasd.def

[manager]
name awsosa 4567
device 0400 osa osa
...
message Remember to start or connect the x3270 sessions before you IPL
message
message For normal startup ipl A80 parm 0a8200

This devmap references a second file, dasd.def (in the same directory), which might contain:

[manager]
name awsckd ABCD
device A80 3390 3990 /z/SBRES1
etc

The (SIZE) parameter in this example is a Linux environmental variable. The variable name
must be enclosed in parenthesis, as shown. The value of the variable must be set before the
devmap is used. It can be set by the Linux shell command, for example:

$ export SIZE=6500m

This command can be issued prior to an awsstart command (in the same Linux terminal
window), but then it will not be effective in other Linux terminal windows. Alternatively, the
export command can be added to the.bashrc file, where it will be effective for any terminal
window subsequently opened. For practical purposes, we suggest adding any devmap
environmental variables to the .bashrc file.11 If the specified environmental variable is not set,
a null string is placed in the devmap.

The include function in the example operates as you might expect. The file specified is
logically inserted into the devmap at the point shown. The operand of the include function
can specify a full Linux path name; if a simple name is specified, it is assumed to be in the
current directory. The file name specified cannot contain blanks. The name could be an
environmental variable instead of a file name, for example include $(fileVAR). If the
specified environmental variable is not defined, the include function is skipped.

The message function simply displays its text when the devmap is processed by the awsstart
command. The message function name can be abbreviated to msg.

It is very unlikely that all the [system] stanza options would be used at one time, but here is a
full example for reference:

[system]
memory 6000m
processors 3 cp cp ziip
3270port 3270
int3270port 3271
intASCIIport 4000
rdtserver 6700@192.168.1.220
expand 1000m #Who uses expanded memory today?
#ipl 0A80 “0A8200” (not recommended. Commented out here)
cpuopt alr=on,zVM_Coupling
message This devmap is excessive
command 2 x3270 localhost:3270
command 2 x3270 -geometry +1100+100 localhost:3270

11 Other required changes to the .bashrc file are described in Chapter 5, “zPDT installation” on page 97.
Chapter 3. Devmaps 39

command 2 x3270 -geomentry +1100+600 localhost:3271
command 2 sync ipl a80 parm a08200
message Remember to start more 3270 sessions
include devmap2

3.2.1 Adjunct-processor stanza

The zPDT system optionally provides emulation of the z System cryptographic adapter.12 The
release level of the cryptographic adapter varies with the zPDT release level. The basic
devmap format for this emulation is as follows:

[adjunct-processors]
crypto 0
crypto 1

This defines two cryptographic processors, numbered 0 and 1. If multiple zPDT instances and
shared cryptographic processors are used, the sharing instances might have a definition such
as the following example:

[adjunct-processors]
domain 0 2
domain 1 2

This indicates that the instance is using domain 2 in cryptographic coprocessors 0 and 1. See
Chapter 17, “Cryptographic usage” on page 299 for more details.

3.2.2 System timer protocol stanza

The system timer protocol (STP) function is described in Chapter 20, “Server Time Protocol
(STP)” on page 321. The Linux daemons associated with STP must be started before using a
devmap containing a STP stanza. The stanza is as follows:

[stp]
ctn 00000000F1F0F9F0 #16 hex digits beginning with 00
node 1 W520 * #asterisks marks this node
node 2 W510

All zPDT systems participating in a CCT/STP network must have a similar stanza (with the
asterisk denoting the local Linux name). When a devmap includes an stp stanza, the devmap
cannot be started (with an awsstart command) unless the STP function is active on the base
Linux system. The devmap stanza may also include a LEAPSECONDS statement, not shown
in this example. This is further described in Chapter 20, “Server Time Protocol (STP)” on
page 321.

3.3 Manager stanzas

A device manager stanza has the following general format:

[manager]
name awsckd C700
device 0a80 3390 3990 /z/SBRES1
device 0a81 3390 3990 /z/SBRES2
etc

12 Do not confuse this with the cryptographic instructions, which to do not require any special devmap statements.
40 IBM zPDT Reference and Guide

The stanza begins with [manager], including the square brackets. In this example the device
manager name is awsckd, but this could be any of the supported device managers. The
device manager name is followed by an arbitrary hex number (up to four digits, different for
each name statement)13. The name statement is followed by as many device statements as
needed. The general format is as follows:

� For name statements:

– The constant “name” starting in the first column.
– The device manager name, such as awsckd.
– A hex control unit number; each name statement must have a different number.
– Additional optional parameters, such as these:

• --path=xx to specify an emulated CHPID number.
• --pathtype=xxx to specify an emulated CHPID type (usually EIO).
• --compress to specify compressed awstape generation.
• Various optional tunnel parameters for OSA operation.

� For device statements:

– The constant “device” starting in the first column.

– The device number (“address”) to be used, expressed in hexadecimal. This may be
three or four digits.

– The device type, such as 3390. This must specify a correct device type for the device
manager.

– The control unit type associated with the device, up to four characters. (This parameter
is not used for anything at this time, but a wise approach is to use an appropriate
control unit number.)

– Parameter (or parameters) unique to the device:

• A fully qualified file name.

• --unitadd=x to specify a unit address (as it would appear in an IOCDS) for some
device types (such as OSA). If this parameter is not used, the two low-order digits
of the device number are used as the default unit address for OSA devices. The
default is appropriate in almost all cases.

• Additional parameters for OSA operation.

At this time, the --path, --pathtype, and --unitadd parameters are typically used only for
OSA definitions.

Except for OSA devices, the path for emulated devices defaults to 01 and the pathtype
defaults to EIO14 for most device managers. In very rare cases it may be desirable to change
these values. This can be done with the --path and --pathtype operands on a name
statement, as follows:

[manager]
name awsckd 20 --path=30 --pathtype=eio
device A90 3390 3990 /z/specialvolume

The path value is expressed as a hex number. Multiple stanzas for the same device manager
may be used. A maximum of 256 devices may be listed in a stanza, where multiple devices
are not limited by characteristics of the emulated control unit. The device numbers
(addresses) assigned to each device need not be sequential or in any particular order.

13 This parameter originally matched a number in a separate IOCDS file. This separate IOCDS is no longer used, but
the positional parameter in the name statement remains.

14 EIO is a special CHPID type for Emulated I/O. zPDT users normally do not need to specify this anywhere.
Chapter 3. Devmaps 41

3.3.1 The awsckd device manager

The awsckd device manager emulates 3380 or 3390 disk drives. The definitions for awsckd
are simple, as this example illustrates:

[manager]
name awsckd 4321 [--shared]
device a80 3390 3990 /z/SYSRES
device a85 3390 3990 /tmp/my3390vol
device 0aa7 3390 3990 /z/SARES1
device 0AA8 3390 3990 #No file specifed; can use awsmount
etc

The device type can be 3390 or 3380; in either case, the Linux file named by the fourth
parameter of the device statement must be in the appropriate emulated format for that device
type. The Linux file containing the emulated volume must have been created with the alcckd
command, or copied from media that originated on a system where the file was initially
created with alcckd. Each emulated volume is a single, separate Linux file.

The third operand of a device statement is a control unit type. This information is not currently
used by zPDT, but it is a positional operand that must be specified. All our examples for the
awsckd device manager use “3990” as the control unit type; this is an older IBM control unit.
Starting with zPDT GA8, awsckd emulates IBM 2107 control units. You can specify 3990,
2107, or anything else up to four characters.

The most common CKD devices are 3390 units. Standard 3390s (models -1, -2, -3, and -9)
may be used, or a variable number of cylinders may be used. The maximum size for a normal
3390 is 64K-1 cylinders; however, zPDT supports extended address volume (EAV) 3390s.

The extra cylinders of a 3390 are not emulated; these are the cylinders reserved as spares or
for diagnostic use. For example, a 3390-3 contains 3339 usable cylinders, and this is what is
emulated. Parallel access volumes (PAV) are not supported.

Device statements may omit a file name. In this case the indicated unit (3390 at address
0AA8 in the example) exists, but has no volume mounted. A volume (which is a Linux file in
the appropriate CKD format) may be mounted (or dismounted) while zPDT is operational,
providing dynamic changes to the DASD environment without stopping zPDT. The awsmount
command is used for this operation.

The --shared option is relevant only if the volume (that is, the Linux file) is shared among
multiple z/OS systems. This option causes the awsckd device manager to do these actions:

1. Emulate RESERVE and RELEASE channel commands.
2. Lock (at the Linux level) the logical tracks of the ckd volume while they are addressed by

an active z System channel program.

Much more is involved in sharing z System volumes and the --shared option is only one
element involved. Use this option when multiple zPDT instances (in the same Linux) are
sharing DASD volumes and when separate zPDT systems (on separate Linux bases) are
sharing DASD through a Linux shared file system. Proper serialization, as seen by z/OS, is
essential for shared DASD and implementing such serialization typically involves z/OS
GRS.15 The --shared option is not used when sharing DASD volumes among multiple z/VM
guests.

15 Global resource serialization (GRS) is a basic element of a z System sysplex configuration.
42 IBM zPDT Reference and Guide

3.3.2 The awsfba device manager

The awsfba device manager provides emulation for FBA disk devices16 (as used by z/VM and
z/VSE).

[manager]
name awsfba 6543
device 100 9336 9336 /z/DOSRES
device 101 9336 9336 /z/DOSWRK

awsfba devices (volumes) must be created before they can be used. This is done with the
alcfba utility. This device manager does not support the more recent Fibre open system FBA
devices for z/OS. It is unfortunate that there are two unrelated uses of FBA terminology.

zPDT development performs only minimal testing for these FBA devices. We recommend
using CKD disks unless there is a specific need for FBA disks.

3.3.3 The aws3274 device manager

The aws3274 device manager emulates local, channel-attached, non-SNA 3270 sessions.
These are used for MVS consoles, simple IBM VTAM® sessions (TSO, IBM CICS®, and so
forth), z/VM terminals, and similar purposes. The actual 3270 emulators (x3270, PCOMM, or
other 3270 emulators) might be local (on the underlying Linux system running zPDT) or
remotely connected via a TCP/IP connection to the underlying Linux. In either case they use
the Linux TCP/IP port number that is assigned in the [system] section of the devmap and they
appear to be local, channel-attached 3270s to the z System software. The same physical
Ethernet interface can be used for Linux functions, such as Telnet, aws3274, FTP, and so
forth and also for OSA connections.

There is a maximum of 32 emulated local 3270 device sessions, regardless of the number of
aws3274 stanzas.

The devmap parameters for emulated local 3270s offer a number of options. These are best
explained by an example.

[manager]
name aws3274 C700 # C700 is an arbitrary CUNUMBR
device 0700 3279 3274
device 0701 3279 3274 L701
device 0702 3279 3274 L702
device 0703 3279 3274 TSO
device 0704 3279 3274 TSO
device 0705 3279 3274 TSO
device 0706 3279 3274
device 0707 3279 3274
device 0708 3279 3274 IMS
device 0709 3279 3274 IMS
device 070A 3279 3274 IMS
device 070B 3279 3274 IMS
device 070C 3279 3274
device 070D 3279 3274
device 070E 3279 3274

The three operands after the device keyword are the address (device number), the device
type, and the control unit type. The remaining optional operand controls potential TN3270e

16 These had IBM type numbers such as 3370, 9332, 9335, and 9336.
Chapter 3. Devmaps 43

client connections to the device. This operand is known as an LUname, although it is not
used as a real SNA LU name. (TN3270e clients can pass an LU name, intended for SNA
protocols, during startup. We use this LU name passing facility here, without actually passing
it to VTAM.) The LU names may have a maximum of 11 characters.

In this example, LUnames are L701, L702, TSO, and IMS. The connection rules are as
follows:

� The LUname is not case-sensitive.

� If an LUname is specified by the TN3270e client, then a free device with the matching
LUname is used.

� If no LUname is specified by the TN3270E client, the next free device in the list is used.

� If there is no free device to match the specified LUname, the connection is rejected.

� A device is freed when a previous TN3270E client connection is terminated.

� If no LUname is specified in the devmap, the default LUname Dev-nnn is generated, where
nnn is the device address.

The aws3274 device manager listens on a port in the base Linux TCP/IP system. Assume the
Linux TCP/IP address is 192.168.1.80 in the following examples. Also assume that our
devmap specifies 3270 as the aws3270 port number. A user can enter one of the following
commands to establish an x3270 session:

$ x3270 -port 3270 192.168.1.80 & case one
$ x3270 -port 3270 TSO@192.168.1.80 & case two
$ x3270 -port 3270 L702@192.168.1.80 & case three
$ x3270 -port 3270 IMS@localhost & use local system

Assume our x3270 client is on a remote machine connected to a private LAN that includes
the zPDT system. In case 1, the user is connected to the next available 3270 session (in the
devmap list). In case 2, the client is connected to the next free device with LUname TSO. In
case 3, the client is connected to the single device with LUname L702, provided that device is
free at this time. The fourth example illustrates that the same LUname rules apply to
connections from the Linux desktop.

In this example both TSO and L702 are LUnames. TSO happens to be used multiple times
but L702 is used only once. There is no requirement to have this arrangement and no
requirement to have the LUname reflect the device address (device number).

The devmap for an AD-CD z/OS system might be defined like this (and this is the most
common example for zPDT users):17

[manager]
name aws3274 C700
device 0700 3279 3174
device 0701 3279 3174
device 0702 3279 3174
device 0703 3279 3174
.....
device 070A 3279 3174

Connections take the next free terminal in the devmap list if no LU conditions are specified.
This can be useful if the first terminal in the devmap is the MVS console18 and the next

17 You might notice that the third operand in the aws3274 examples is sometimes 3174 and sometimes 3274 in the
examples. This operand in device statements is not processed and can be any four character value. We suggest a
meaningful value only for documentation.

18 The AD-CD z/OS systems have always defined the MVS console at address 700.
44 IBM zPDT Reference and Guide

terminal is a suitable TSO address. In this case, without specifying any LU names, the first
x3270 session will be the MVS console and the second will be a TSO session (or CICS or
some other VTAM application). As a practical matter, we have observed that few zPDT
customers use the LU name facility.

From the user’s perspective, a 3270 terminal is a TN3270e session. The IBM Personal
Communications product and the x3270 emulator available for Linux have been tested for this
usage.19 The TN3270e client might operate on the machine running the zPDT processes (on
the local Linux desktop, for example), or it might operate through a remote TCP/IP
connection. In either case, the TN3270E terminal appears as a local, non-SNA,
channel-attached 3270 to the z System operating system.

The use of TN3270e (rather than TN3270) is required because the LU name (which is
supported by TN3270e, but not TN3270) is needed. Most modern, supported 3270 emulators
provide TN3270e functions.

Starting a 3270 session (via aws3274) requires a small amount of free space in the Linux /tmp
file system. If /tmp is completely full, a new aws3274 session cannot be started.

3.3.4 The awstape device manager

Definitions for awstape appear as follows:

[manager]
name awstape AB00 [--maxlength=1000m] [--compress]
device 560 3490 3490
device 561 3490 3490 /local/my.tape.vol.111111

The emulated device type may be 3420, 3480, 3490, or 3590. (The third operand, the control
unit type, is not meaningful.) A file name may be specified as the last operand; if a file name
is specified, the file must be in awstape format (if it is for input). This situation is similar to a
premounted tape on a larger z System. Typically, no file is specified for emulated tape
devices. Instead, the awsmount command is used to emulate the mounting of a tape volume.

The maxlength parameter is optional. If a maxlength value is specified, the device manager
signals end-of-tape after the specified number of bytes has been written. (z/OS would then
probably write trailer labels and call for another tape mount.) If maxlength is not specified,
then the maximum tape content is limited by one or more of the following conditions:

� The amount of free disk space in the Linux file system.

� An architectural limit of approximately four million tape blocks for 3480 and 3490 device
types. The device signals end-of-tape just before this limit is reached. This limit exists for
both reading and writing tapes.

� Device types 3420 and 3590 do not have specific limits.

Emulated tape volumes created through this device manager are in awstape format and can
be exchanged with other systems that can process this format. All awstape files are
compatible with all zPDT emulated tape devices. An awstape file written by an emulated 3490
can be read by an emulated 3420, for example.

19 The aws3274 device manager sends an attention signal to the host when a session is first connected. In some
cases, such as when connected to the VTAM unformatted system services function, this may prompt a full buffer
read by the host software. If the TN3270e session buffer is not formatted for this buffer read, the host may display
an “Unsupported Function” message. Simply clearing the TN3270 screen should resolve the situation. Some
TN3270e emulators encounter this situation and others do not.
Chapter 3. Devmaps 45

The proper responses for hardware compaction (IDRC) are emulated, although tape data is
not actually compacted by this method. The awstape data may be optionally compacted by
the awstape device manager. This is controlled through a devmap or an awsmount
parameter. The compaction format is unique to zPDT awstape. The default uncompacted
form should be used for data interchange with other systems that use awstape data.

The awstape volumes are created when they are written; that is, it is not necessary to create
or initialize the volume before writing to it unless the software expects a labelled tape. (An
“empty” labelled tape may be created with the zPDT aws_tapeInit command.)

3.3.5 The awsosa device manager

The awsosa device manager emulates various OSA-Express functions, as used by z System
TCP/IP or SNA.20 Currently the emulation level is OSA-Express5. Two manager formats are
used:

[manager]
name awsosa 8888 --path=F0 --pathtype=OSD [--interface=xxxx]
device 400 osa osa --unitadd=0
device 401 osa osa --unitadd=1
device 402 osa osa --unitadd=2

[manager]
name awsosa 2345 --path=A0 --pathtype=OSD [--interface] [--tunnel_intf=y]
 [--tunnel_ip=10.1.1.1] [--tunnel_mask=255.0.0.0]
device 404 osa osa
device 405 osa osa
device 406 osa osa

The first example is used with a typical PC Ethernet adapter. The second example is for a
tunnel interface between the emulated OSA adapter and the underlying Linux TCP/IP
system.21 The awsosa device manager can concurrently use the same Ethernet adapter that
is used by Linux for normal Linux TCP/IP functions, but the OSA user and Linux cannot
communicate with each other through it. That is, both OSA and Linux can share the adapter
for connection to external TCP/IP systems, but they cannot communicate with each other.22 A
tunnel interface (which is similar to another Ethernet adapter) is necessary for direct
communication between the underlying Linux system and the z System OSA operation.

The --path operand specifies a CHPID number. The correct number is determined with the
find_io command. For these examples we assume the CHPID for wired Ethernet is F0 and the
CHPID for a tunnel interface is A0. The --pathtype is OSD (for QDIO) or OSE 23(for LCS or
non-QDIO). In some cases the find_io command does not provide a CHPID (path name) for
a LAN interface and the --interface=xxxx parameter may be used to name a specific LAN
interface. The interaction of the --path and --interface parameters is explained in detail in
Chapter 7, “LANs” on page 119. An example of using the --interface parameter might be:

name awsosa 1234 --path=B0 --pathtype=OSD --interface=em1

20 zPDT SNA usage has not been tested by IBM and no support is available for it.
21 If no IP address is specified for a tunnel interface it will default to 10.1.1.1.
22 This odd limitation is a characteristic of current Linux implementations.

Tip: See “LANs” on page 119 for details about using the emulated OSA functions.

23 We do not recommend OSE use unless you have a special need for it.
46 IBM zPDT Reference and Guide

The --unitadd operands specify the internal OSA interface number; normally these are not
needed for QDIO operation. They may be needed for non-QDIO operation if more than one
TCP/IP interface is used. z/OS TCP/IP requires three OSA addresses for QDIO operation.

SNA usage would require CHPID type OSE, although SNA usage with zPDT is not
supported. The z/OS device type should be OSA, as seen in the z/OS IODF (and when
displaying devices on the MVS console).24 When used in OSE mode, the OSA interfaces are
associated with OAT25 definitions that specify how each interface is to be used.

The limits in Table 3-1 apply to OSA-Express emulation.

Table 3-1 OSA-Express limits, per port

3.3.6 The awsrdr device manager

The awsrdr device manager emulates a 2540 card reader. Only one awsrdr device may be
configured for an instance of zPDT operation. Typically, the emulated card reader is used to
submit jobs to the operating system.26 If we assume this to be z/OS, then JES2 or JES3
should be configured with a “hot” reader.27 The traditional address for a 2540 is 00C, and we
use this in our examples.

The awsrdr device manager monitors the directory specified in the devmap. When a file is
found in the directory, it is read (assuming a z System program has a read that is outstanding
for the card reader, as would be the case with a JES hot reader). After the file (“card deck”) is
read, it is moved to the old subdirectory. In this way, there is never a file in the directory
assigned to the reader, other than a file someone has just moved there to be read. As soon
as it is read, it is moved out of the reader directory. If awsrdr is not active, or if there is no z
System program trying to read cards, then files sit in the reader directory indefinitely.

The devmap entry for the card reader might look like this:

24 Older z/OS systems may use CTC device definitions for these interfaces, especially when they are used for
TCP/IP. These definitions should be replaced with device type OSA.

25 An OAT is an OSA Address Table.

Maximum OSAs (and maximum OSA CHPIDs) 4

Maximum home addresses (IPv4 + IPv6 + DVIPA) per OSA port 64

Maximum IPV6 addresses 32

Maximum multicast addresses (IPv4 + IPv6) 64

ARP table size 256

IP stacks per port (OSD or OSE) 16

SNA PUs per OSA-Express port (SNA is not supported for zPDT) 512

OSE subchannels per stack 2

OSE or OSD maximum devices 48

OSE IP stacks per OSA port/CHPID 16

OSD subchannels per stack 3

OSD subchannels per OSA/CHPID 48

26 In principle, we could directly allocate the card reader to a job using the appropriate DD statement. We did not try
this.

27 The term “hot reader” means there is always a read outstanding for the card reader. As soon as an operator
places cards in the reader, JES begins reading them.
Chapter 3. Devmaps 47

[manager]
name awsrdr 010C
device 00C 2540 2821 /home/ibmsys1/cards/* (the asterisk is required)

The /home/ibmsys1/cards/ directory in the example is arbitrary; the default path is
/home/<userid>/z1090/cards/.

ASCII and EBCDIC
Linux text files are normally in ASCII. z/OS cards are normally in EBCDIC, but may contain
binary information. A card reader uses fixed-length records (80 bytes) but a Linux text file has
variable length records terminated with an NL character.

The conversion rules are as follows:

� If the input file name (in the directory used by awsrdr) contains the suffix .ebc or .bin, then
the file is assumed to already be in EBCDIC and no translation is done.

� If the input file contains the suffix .txt or .asc, then the file is assumed to be in ASCII and
is converted to EBCDIC.

� If the input file contains the ASCII characters // or ID or $$ or USERID in the first bytes, the
file is assumed to be in ASCII and is converted to EBCDIC.

� If none of these conditions are true (suffix .ebc, or .bin, or .asc, or .txt, or recognizable
first characters in ASCII), then the file is assumed to be EBCDIC (or binary as used for z
System) and it is not converted.

� If a file is converted from ASCII, the record length is padded with blanks to 80 bytes and
the terminating NL bytes are removed.

� If the file is not converted from ASCII for one of these reasons, then awsrdr reads it in
80-byte chunks and passes the data (unchanged) to the emulated card reader.

Another way to translate ASCII text files to EBCDIC card files is with the txt2card command.

The ASCII/EBCDIC translation table is fixed in all cases.

3.3.7 The awsprt device manager

The awsprt device manager emulates a 1403 or 3211 printer. FCB functions28 are supported
for 3211 emulation, but UCS functions for a 1403 are not supported. A fixed translation table
is used to convert EBCDIC to ASCII. The device manager automatically inserts NL characters
between output records. Unprintable characters are translated to blanks and no unit check is
generated for these.

awsprt cannot recognize divisions between z System jobs. It simply concatenates all output
(potentially from multiple jobs) into the output file. The devmap specifies the output file to be
used:

[manager]
name awsprt 0003 [--windows]
device 00E 1403 2821 /home/ibmsys1/print

If a file name is not provided with the device statement, the default file name
(/home/<userid>/z1090/listings/dev-nnnn.lst) is used. The --windows option causes the
output lines to be terminated with CR/LF characters instead of NL characters.

28 FCB refers to the Forms Control Buffer.
48 IBM zPDT Reference and Guide

The awsmount command may be used to close the existing output file and open a new output
file. The previous output file is closed properly, and is then available for display or printing
under Linux. “Local printing” on page 232 provides more information about printing output
with the awsprt device manager.

3.3.8 The awscmd device manager

This device manager provides a “device” that appears to z System software as a tape drive.
Its function is to send a command (and data) to the underlying Linux and then receive the
output from the Linux command. Any Linux command may be sent, including those that could
destroy the Linux system.29 Obviously, this device manager should be used with care and
may not be appropriate for a zPDT environment that can be accessed by untrusted users.

Configuration is similar to other device managers:

[manager]
name awscmd 20
device 580 3480 3480

The device type can be 3420, 3422, 3480, 3490, or 3590; these are the tape device types
emulated by zPDT. The device number (580) must match a corresponding device type in
your z/OS IODF. (Any device number may be used with z/VM.)

The intended operation (by a z System application program) is as follows:

1. A rewind is issued to the device.

2. The desired Linux command (expressed in EBCDIC) is written to the device.

3. Any stdin data to be used by the Linux command is written to the device.

4. EBCDIC to ASCII translation is done automatically, with a fixed translation table.

5. A tape mark is written to the device.

6. At this point, the awscmd device manager submits the command (and data) to Linux
through a shell that does not appear on the Linux screen. The current Linux directory for
the command is the same directory that was used to start zPDT.

7. When the awscmd function completes there are four files on the pseudo-tape device:

– The command file that was submitted to Linux (with redirection operands that were
automatically added by awscmd)

– The stdout data from the Linux command

– The stderr data from the Linux command

– The return code (converted to characters) from the Linux command

8. The output (on the pseudo tape) has been converted to EBCDIC.

9. Two tape marks are at the end of the pseudo tape.

Restrictions
The command sent to Linux cannot include any redirection (less than (<) or greater than (>)
characters), asynchronous indicator (ampersand (&) character), or pipe (“|” or vertical bar
character). The pseudo tape device will appear to be busy while Linux is executing the
command. Any Linux command that creates substantial delays (of many seconds) may cause
I/O timeout errors to be generated in z/OS.30

29 The Linux commands are executed with the authority of the userid that started zPDT operation.
30 Prior version of awscmd had a timeout function that limited the time allowed for the Linux command. This timeout

check has been removed at customer requests.
Chapter 3. Devmaps 49

At the time of writing, the following characters did not survive the conversion from EBCDIC to
ASCII when included in the stdin data:

� Tilde (~)
� Caret (^)
� Colon (:)
� Double quotation marks (")
� Less than (<)
� Greater than (>)
� Question mark (?)

An extended example of awscmd usage is in Chapter 11, “The awscmd command” on
page 209.

3.3.9 The awsscsi device manager

The awsscsi device manager emulates a mainframe tape drive using a SCSI tape drive. The
specific adapters and tape drives supported are discussed in Chapter 14, “Tape drives and
tapes” on page 271. The general format is as follows:

[manager]
name awsscsi 700
device 581 3490 3490 /dev/sg5

The last operand of the device statement denotes the SCSI device to be used. This must be
given as a /dev/sgx name, and not as a /dev/stx name. The differences are complex;
Chapter 14, “Tape drives and tapes” on page 271 describes methods for determining the
correct /dev/sgx name. The SCSI tape drive appears as a 3420, 3480, 3490 or 3592 device to
the z System software.31 The awsmount command may be used with SCSI tape devices.

3.3.10 The aws3215 device manager

The aws3215 device manager provides emulation of a 3215 console, using devmap
parameters such as these:

[manager]
name aws3215 AC00
device 009 3215 3215

It is possible, but very unusual, to have multiple 3215 devices. Input to the 3215 console is via
the awsin command, entered in a Linux command window. Output appears in the Linux
window used for the awsstart command.

3.3.11 The awsoma device manager

The awsoma device manager is used to read CDs or DVDs32 written in a special format
known as OMA. This is for input only; it is not possible to write to an awsoma device. In earlier
days, z/VM and z/VSE were available in OMA format; some Linux distributions for z System
may use this format.

[manager]
name awsoma D000
device F00 oma oma /media/ROM/;xyz.tdf

31 Remember that IBM 3490 tape units have their own characteristics. One of these is a maximum block count of
approximately 4 million (a 22-bit number).

32 It is possible to have OMA files on other media, but a CD or DVD is usually where they are found.
50 IBM zPDT Reference and Guide

The variable portion of the device statement (after the second oma) must be in a specific
format, with two names separated by a comma or semicolon. There must be no blanks
between the operands. The first name is a path name and the second name is a particular file
name. That is, the second name is relative to the path specified by the first name.33

In a Linux-based zPDT system, the net effect is that the two names are concatenated. In the
example above, the effective file name used for input to awsoma is /media/ROM/xyz.tdf. The
slash (/) after ROM can be omitted and a slash inserted before xyz.tdf; this results in the
same effective file name.

Current releases of zPDT have expanded the possible formats to include these:

device 123 oma oma /tmp/;my.tdf results in /tmp/my.tdf
device 123 oma oma /tmp/my.tdf single fully qualified name
device 123 oma oma my.tdf results in /home/ibmsys1/my.tdf

(assuming zPDT was started from /home/ibmsys1)
device 123 oma oma /media/myCD/TAPES/my.tdf

(data is assumed to be in /media/myCD/xxxxx)

The first example follows the original requirements. The second example uses a single fully
qualified name. The third example causes the specified file name (my.tdf) to be relative to the
directory used to start zPDT operation. The last example depends on the keyword TAPES to
indicate that data files are relative to the directory above TAPES.34

The variable portion of the device statement may be omitted. In this case, awsmount
commands are used to associate the TDF file with the awsoma device. The two-operand
format, as used in the initial description above, is not valid for awsmount.

3.3.12 The awsctc device manager

The awsctc device manager emulates a 3088 channel-to-channel control unit. A typical
definition is as follows:

[manager]
name awsckd 5432
device E40 3088 3088 ctc://192.168.1.81:3088/E42
 | | |
 | | + remote device number
 | + remote port number
 + remote IP address

Multiple devices may be defined for this device manager. Chapter 16, “Channel-to-channel”
on page 291 describes the setup and usage of this device manager.

33 This operand convention was evolved for early OS2-based machines, where it helped deal with drive letters that
might be needed before a file name.

34 This convention was used in the original OMA support and is documented in IBM publication SC53-1200.
Chapter 3. Devmaps 51

52 IBM zPDT Reference and Guide

Chapter 4. zPDT commands

zPDT commands are entered as normal Linux line commands in a Linux terminal window. If
zPDT is running (that is, the z System function is operating) then zPDT commands directed to
the z System must be entered in a Linux window that is owned by the Linux userid that
started the z System function.1 This is not normally an issue unless multiple zPDT instances
are running, each under a separate Linux userid.

The term devmap is used throughout this book to indicate a zPDT device map, which is a
simple Linux text file that specifies z System characteristics and emulated I/O devices for an
instance of z System operation.

The commands described in this chapter are the “native” zPDT commands. The Information
Technology Company (commonly known as ITC) offers a completely packaged zPDT system
as an ITC product known as uPDT. All the commands described in this chapter also apply to
uPDT systems; in addition, ITC also provides a graphics interface (GUI) to automate common
startup, shutdown, backup, restore, and other important processes. The GUI operation is not
described in this document; more information is available from ITC.2

The IBM zD&T product might also offer additional, optional commands and utilities for zPDT.

4

1 This means the same Linux user who issued the awsstart command must enter any additional zPDT commands
that affect that instance of z System operation.

2 Information Technology Company LLC, 7389 Lee Highway, Falls Church, VA 22042 or sales@itconline.com
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 53

4.1 The commands with examples

The return values listed for many of the commands are normally not relevant, but might be
useful if the commands are embedded in a shell script.

Most of the commands have a help option, usually invoked by an -h operand.3 This operand
is not shown in the following descriptions because it is the same for almost all commands and
adds needless bulk to the command descriptions. The same help information may be
obtained with a Linux man command using the zPDT command name as the operand, as in
the following example:

man awsstart (request MAN pages for awsstart command)
awsstart -h (displays the same MAN pages)

The dollar sign ($) or pound sign (#) in examples (and in many examples throughout this
book) represent the Linux prompts.

4.1.1 The adstop command

The adstop command sets an address stop point for the default CP or, if directed, for all CPs.4
When the instruction address in the PSW equals the specified address, the CP enters a
stopped state. The PSW check is effective for both virtual or real addresses. Only one stop
address may be in effect for each CP. To be most effective, only one CP should be in use or
the same address stop should be set for all active CPs. (The default CP is changed with the
cpu command.) zPDT must be operational when using this command.

adstop hex-address [on | off] [all]
 [q]

Where:

q means query the current settings for the command.

Command examples are as follows:

$ adstop 4FCC (set adstop for default CP)
$ adstop off (remove adstop for default CP)
$ adstop 7180 all (set adstop for all CPs)
$ adstop off all (remove adstop for all CPs)

Assuming you have three CPs and the default CP is CP 0, consider this information:

$ adstop 37F10 all (set adstop for all three CPs)
$ adstop 200E0 (set a different adstop for default CP)

This results in an adstop address of 200E0 for CP0, and address 37F10 for CP1 and CP2.
This might be useful under unusual circumstances. Only the CP that encounters the target
address is stopped, even if the all operand is used in the adstop command. As a practical
matter, this command is most useful if a single cp is used.

4.1.2 The alcckd command

The alcckd command creates (and formats) a Linux file that may be used as an emulated
3380 or 3390 DASD unit. The file is formatted to correspond to 3380 or 3390 tracks and
cylinders in CKD format, but is otherwise not initialized. A utility program (such as ICKDSF)
3 In some cases, a question mark (?) operand can be used in addition to the -h operand.
4 In this context, zIIPs, zAAPs, and IFLs are considered CPs.
54 IBM zPDT Reference and Guide

must later be used to create a volume label, VTOC, and so forth. A standard model (3380-1,
3380-2, 3380-3 or 3390-1, 3390-2, 3390-3, 3390-9) may be specified to establish the size of
the emulated device, or a “non-standard” model number may be used5, or a specific number
of cylinders may be specified. zPDT need not be operational when using this command.
(zPDT might need to be restarted, with an updated devmap, to use the newly created CKD
device.)

alcckd file-name { -ddevice-type [-snumber-of-cylinders] [-q] }
 { -r }
 { -rs }
 { -rf }
 { -ve | -vr | -vc | -vi | -vd }
 { -f4 }

Where:

file-name is a Linux file name.

-ddevice-type is a device type, optionally with a model number. The following list
presents the standard 3380 and 3390 sizes. If no model number is specified, you must
specify the number of cylinders with the -s parameter.

-d3380-1 is device type 3380 with 885 cylinders.
-d3380-2 is device type 3380 with 1770 cylinders.
-d3380-3 is device type 3380 with 2655 cylinders

-d3390-1 is device type 3390 with 1113 cylinders.
-d3390-2 is device type 3390 with 2226 cylinders.
-d3390-3 is device type 3390 with 3339 cylinders.
-d3390-9 is device type 3390 with 10017 cylinders.

The type field may specify a non-standard model number for 3390 devices. This model
number is multiplied by 1113 to determine the number of cylinders to allocate. For
example, -d3390-20 allocates a 3390 with 20*1113 = 22260 cylinders.

-snumber-of-cylinders is an alternative to specifying a non-standard model number. It
determines the number of cylinders to be created. The maximum size is 65520 cylinders
for a “normal” 3390, or 268,435,456 cylinders for an extended address volume 3390.

-r displays the CKD device attributes for an existing emulated CKD file. The alcckd
command with no operands produces the same information.

-rs displays the CKD device attributes for an existing emulated CKD file and scans the file
to verify that the emulated CKD formatting is correct.

-rf performs the -rs function and reinitializes any emulated tracks with incorrect formats;
the data content of that track is lost.

-q invokes quiet mode, with no output messages to the Linux terminal.

-ve, -vr, -vc, -vi, and -vd are related to versioning and are described in Chapter 13,
“Additional zPDT notes” on page 251.

-f4 causes the new volume to be formatted in 4K blocks. Some Linux distributions (for z
Systems) cannot format a CKD volume and this option is for use with those distributions.

Early releases of zPDT did not allow a space between the -d or -s flag and the associated
parameter. This restriction no longer exists, but examples are still in the no space format.

If more than 65520 cylinders (for a 3390) are specified, an extended address volume (EAV) is
produced. The number of cylinders in an EAV should be an integral multiple of 1113.

5 The non-standard sizes are intended only for 3390 devices.
Chapter 4. zPDT commands 55

The return values are as follows:

0 Successful operation.
11 Insufficient Linux disk space to create the file.
12 Linux path not found.
13 Linux write protection (permissions) error.
14 General error.
15 Specified file already exists.
16 File not found or file name is invalid.
17 Drive not ready.
19 Disk not valid.
20 Not an emulated CKD volume.
21 Emulated CKD format is not valid

Examples of command use:

$ alcckd /z/WORK01 -d3390-3 (create new emulated 3390-3 volume)
$ alcckd /tmp/222222 -d3390 -s100 (create small 3390 volume, 100 cylinders)
$ alcckd /z/WORK01 -rs (verify format of CKD volume)

4.1.3 The alcfba command

The alcfba command creates (and formats) a Linux file that may be used as an emulated
9336 DASD unit. The file is formatted to correspond to the fixed blocks of a 9336 device and
a volume name may be assigned. A standard model (9336-1, 9336-2) may be specified to
establish the size of the emulated device, or a specific number of blocks may be specified to
create a nonstandard size. (Fixed-block devices compatible with 9336 drives may also used
these emulated volumes.) zPDT need not be operational when using this command. (zPDT
could be restarted with an updated devmap to use the newly created FBA device, or you
could use the awsmount command to mount the new volume on an existing FBA device in a
running zPDT system.)

alcfba file-name {-ddevice-type [-ssize{B|K|M}][-vvolser][-q] }
 {-c -vvolser [-q] }
 {-r }

Where:

file-name is the Linux file name for the emulated volume.

-ddevice-type:
-d9336 is device type, size is set by the -s parameter.
-d9336-1 is device type, size is 920,115 blocks.
-d9336-2 is device type, size is 1,672,881 blocks.

-ssize is the size (in decimal) of the emulated volume.

-snnnB specifies the number of 512K blocks for the device.
-snnnK specifies the total volume size in kilobytes.
-snnnM specifies the total volume size in megabytes.

-vvolser sets the volume serial to the indicated name (6 characters). The volser is six
characters and automatically converted to upper case.

-c change the volser of an existing FBA volume.

-q sets quiet mode with no output messages sent to the Linux terminal.

-r display the attributes of an existing FBA volume.
56 IBM zPDT Reference and Guide

Earlier releases of zPDT did not allow a space between the -d, -s, or -v flag and the
associated parameter. This restriction no longer exists, but examples are still in the no space
format.

Return values are as follows:

0 Command completed successfully.
1 Help information was displayed.
11 Insufficient Linux disk space to create the FBA volume.
12 Path not found.
13 Write protection (permissions) error.
14 General error.
15 Specified file already exists.
16 File not found or the file name is not valid.
17 Drive not ready.
19, 20 Disk not valid.

Command examples are as follows:

$ alcfba /z/TEMP01 -d9336-1 -vSCRTCH
$ alcfba /tmp/444444 -d9336 -s2000B -vMYVOL1
$ alcfba /z/TEMP01 -c -vWORK99

4.1.4 The ap_create command

The ap_create command dynamically creates an emulated cryptographic processor. zPDT
must have been started when this command is used.

ap_create -a n

Where:

n is the number of the coprocessor and is in the range 0 - 15.

Emulated cryptographic coprocessors are normally specified in the devmap, in the
[adjunct-processors] stanza and are created automatically when zPDT is started. This
command would be used only in unusual situations.

4.1.5 The ap_destroy command

The ap_destroy command removes an emulated cryptographic coprocessor if it is not
connected to a CP process. zPDT must have been started when this command is used.

ap_destroy -a n

Where:

n is the number of a defined cryptographic coprocessor.

Emulated cryptographic coprocessors are automatically removed when zPDT is stopped.
This command would be used only in unusual circumstances.

4.1.6 The ap_query command

The ap_query command displays the status of emulated cryptographic coprocessors. zPDT
must have been started when this command is used.
Chapter 4. zPDT commands 57

ap_query
ap_query -a n

Where:

n is the number of a defined cryptographic coprocessor.

This command queries basic status and domain information. With no operand, it lists the
coprocessors available to the z System. With an operand, it lists which domains are used by
the indicated coprocessor.

4.1.7 The ap_von and ap_voff commands

The ap_von and ap_voff commands vary emulated cryptographic coprocessors (or domains)
online or offline. zPDT must have been started when this command is used.

ap_von -a n
ap_von -a n -d y
ap_voff -a n
ap_voff -a n -d y

Where:

n is the number of a cryptographic coprocessor.

y is the number of a domain within the specified coprocessor.

Emulated cryptographic coprocessors defined in the devmap are automatically made online
when zPDT is started. The ap_von and ap_voff commands are not normally used, although
they become relevant when ap_create or ap_destroy commands are used.

4.1.8 The ap_vpd command

The ap_vpd command displays Vital Product Data (VPD) data for an emulated cryptographic
coprocessor. zPDT must have been started when this command is used.

ap_vpd -a n

Where:

n is the number of a defined cryptographic coprocessor.

This command might be useful to verify that the specified coprocessor is, indeed, active. The
data displayed is not relevant to normal zPDT operation.

4.1.9 The ap_zeroize command

The ap_zeroize command erases (zeros) the content of a specified emulated cryptographic
coprocessor, or a subset of a coprocessor. zPDT must be running when this command is
used.

ap_zeroize -a n -d y
ap_zeroize -a n -i

Where:
58 IBM zPDT Reference and Guide

n is the number (0-15) of an emulated cryptographic coprocessor.

y is a domain (0-15) in the specified coprocessor.

This command reinitializes (zeros) all the data, such as keys, that is retained by the
coprocessor. The first version of the command (with the -d operand) affects only the specified
domain in the specified coprocessor. The second version (with the -i operand) zeros the
whole adapter. Either -i or -d must be specified (with an appropriate domain number for y).

When a new cryptographic coprocessor is used (or when one is zeroized), it must be
reinitialized. This is normally done with the ICSF utility, as briefly explained in Chapter 17,
“Cryptographic usage” on page 299.

4.1.10 The attn command

The attn command creates a simulated attention interrupt from a device. zPDT must be
operational when using this command.

attn device-number

Where:

device-number is the address (device number) of a device in the current devmap.

The meaning of an attention interrupt varies depending on the device type. In typical zPDT
operation this command is probably not used.

A command example is as follows:

$ attn 590

4.1.11 The aws_bashrc and aws_sysctl commands

These commands may be used during zPDT installation to bypass making tedious manual
changes to Linux files. zPDT would not normally be operational when using these commands.
These two shell scripts are in /usr/z1090/bin, along with all the other zPDT command files.
However, at the time these two commands are typically used, /usr/z1090/bin is not yet in the
Linux PATH. For that reason, these commands are typically called by their full path name:

/usr/z1090/bin/aws_sysctl (change to root before using this command)
$ /usr/z1090/bin/aws_bashrc (do not use this command as root)

The aws_sysctl command makes required modifications to /etc/sysctl.conf and then
executes /sbin/sysctl. The aws_sysctl command must be executed with root authority. The
statements this command adds to /etc/sysctl.conf are appropriate for many zPDT users,
but may need to be manually modified for larger zPDT instances. This is discussed further in
Chapter 5, “zPDT installation” on page 97

The aws_bashrc command modifies the .bashrc file in the current directory. You should
normally be in your home directory (not as root) when executing this command. The
command adds the appropriate zPDT PATH statements to .bashrc.

4.1.12 The aws_findlinuxtape command

This command lists any SCSI tape drives that are connected to the underlying PC:

aws_findlinuxtape
Chapter 4. zPDT commands 59

This command lists both the st and sg numbers currently associated with each tape drive
found. See 14.1, “The awsscsi device manager” on page 271 for more information about the
device identifiers used with SCSI tape drives. zPDT need not be operational when using this
command. Remember that the sg number can change when Linux is booted.

4.1.13 The aws_tapeInit command

This command creates an emulated tape (awstape format) with a standard label.

aws_tapeInit volser file-name

The volser is the volume serial number of the new tape and file-name is the Linux file name
for the emulated tape volume. The volser must be six characters, letters and/or numbers with
no special characters. (This is slightly more restrictive than volume serial numbers created by
other means.) The volser is automatically translated to upper-case EBCDIC. zPDT need not
be operational when using this command.

Command examples are:

$ aws_tapeInit 222222 /z/tape222222
$ aws_tapeInit tape01 /tmp/mywork/TAPE01 (creates volser TAPE01)

4.1.14 The aws_tapeInsp command

This command examines a Linux file. If the file appears to be an emulated tape volume in
awstape format it is examined for standard header labels. Basic information from the
standard header labels is displayed. zPDT need not be operational when using this
command.

aws_tapeInsp file-name

The file-name is the Linux file name of an emulated tape volume. Simple tests are made to
determine if the file is in awstape format. If it appears to be in awstape format it is checked for
VOL1, HDR1, and HDR2 labels. The dataset name and DCB parameters are displayed if they
are present. The emulated tape volume is not scanned, other than the first three records, and
subsequent labels on the tape are not inspected.

A command example is:

$ aws_tapeInsp /z/tape01.aws
 volser: TAPE01
 DSN: SMF30.EXTRACT
 RECFM: FB LRECL: 100 BLKSIZE: 10000

4.1.15 The awsckmap command

The awsckmap command validates the content and format of a device map, reporting any
errors found. zPDT need not be operational when using this command.

awsckmap devmap-name [--list]
 [--sys]
 [--sum]
 [--mgr]
 [--dev]

Where:
60 IBM zPDT Reference and Guide

devmap-name is a Linux file name (fully qualified, if necessary).

--list causes the command to output a listing of the complete configuration.

--sys provides information about the systems section of the devmap.

--sum provides information about the subchannel/devices in the devmap.

--mgr lists the device managers required by this devmap.

--dev lists detailed device information from the devmap.

The return code is always zero. Examples of the command are as follows:

$ awsckmap aprof1
$ awsckmap /z2/VM/devmap2.txt --list

4.1.16 The awsin command

The awsin command provides input to an emulated 3215 console. The address (device
number) of the 3215 must be provided if more than one 3215 is defined. (3215 devices are
rare today, and this command is seldom used.) zPDT must be operational when using this
command.

awsin { [dev-address] 'text' }
 { [dev-address] -a }

Where:

dev-address is the address (device number) from the devmap.

'text' is the message to be sent to the 3215.

-a indicates that an attention interrupt should be sent, but no text.

The text operand is normally included in single quotation marks to prevent the Linux shell
from altering it. Return values are as follows:

0 Input text queued for input or attention interrupt sent.
-1 Errors. (Devmap problem; -a and text both included; text too long)
-2 No 3215 device found in the devmap.
-3 No dev-address specified and multiple 3215s exist in devmap.

A typical example of command usage is as follows:

$ awsin 'sta,id=ifdasd'

4.1.17 The awsmount command

The awsmount command associates a Linux file with an emulated I/O device. It can also be
used to perform various operations on emulated tapes, query device status, and make a
device read-only or read-write. zPDT must be operational when using this command.

awsmount dev-address {-b | --bsf [n] }
 {-c | --compress }
 {-f | --fsf [n] }
 {-s | --rew }
 {-t | --wtm [n] }
 {-x | --run }
 {-u | --unmount }
 {-r | --ro | --readonly }
 {-w | --rw | --readwrite }
Chapter 4. zPDT commands 61

 {-q | --query }
 {{-o | --replace} file-name [-r|--ro|-w|--rw] }
 {{-m | --mount } file-name [-r|--ro|-w|--rw] }
 {-d | --disc | --disconnect }

Where:

dev-address is the device address from the devmap.

-b or --bsf backspaces over one tape mark on an emulate tape drive.

-c or --compress causes output to an emulated tape drive to be compressed.

-f or --fsf forward spaces over one tape mark on an emulated tape drive.

-s or --rew rewinds an emulated tape drive.

-i or --wtm writes a tape mark on an emulated tape drive.

-x or --run produces a rewind and unload on an emulated tape drive.

-u or --unmount produces an unmount operation on the device. This removes any
previous Linux file association with the device.

-r or --ro or --readonly makes the emulated device read-only.

-w or --rw or --readwrite makes the emulated device read-write.

-o or --replace replaces the existing file association with a new file association (similar to
replacing a tape on a tape drive) and the new file has the indicated read-only or read-write
characteristics.

-m or --mount associates a new file with the emulated device, when no file was associated
with it at the time of the command.

n is the number of operations to perform. (This option is not available yet.)

-d or --disc or --disconnect is used to force disconnection of a 3270 session.

Tape operations (bsf, fsf, rew, wtm, and run) for emulated tape drives also may be used with
SCSI-attached tape drives. Appropriate awsmount functions may be used for the awsckd,
awsfba, awstape, awsscsi, awsprt, and awsoma device managers. The awsmount command
should never be directed at an awsosa device.

Examples of extended use of awsmount (using 580 as a typical device number) are as
follows:

For tape drives (emulated or SCSI)
$ awsmount 580 -q query currently mounted file
$ awsmount 580 -m /tmp/tapevol/123456 mount emulated volume
$ awsmount 580 -o /z/654321 replace mounted volume
$ awsmount 580 -u unmount current volume
$ awsmount 580 -x (or --run) unmount current volume
$ awsmount 580 -b backspace over tape mark
$ awsmount 580 -f forward space over tape mark
$ awsmount 580 -s rewind tape volume
$ awsmount 580 -t write tape mark
$ awsmount 580 -c /tmp/mytape1 mount and use compression

For OMA tapes (using device number 180 as an example)
$ awsmount 180 -q query currently mounted file
$ awsmount 180 -m /tmp/oma/11111 mount emulated volume
$ awsmount 180 -o /z/oma/dosvol replace mounted volume
$ awsmount 180 -u unmount current volume
$ awsmount 180 -x (or --run) unmount current volume
62 IBM zPDT Reference and Guide

$ awsmount 180 -b backspace over tape mark
$ awsmount 180 -f forward space over tape mark
$ awsmount 180 -s rewind tape volume

Disks and printers (using 300 and 00E device numbers)
$ awsmount 300 -q query mounted file name
$ awsmount 300 -m /z/LOCAL1 mount emulated volume
$ awsmount 00E -m /tmp/print1 printer output file
$ awsmount 300 -o /z/LOCAL2 replace mounted volume
$ awsmount 300 -u unmount current volume

aws3270 (local 3270 sessions; device number 702 for example)
 $ awsmount 702 -q query tn3270 client

$ awsmount 702 -d force a disconnect
awsscsi (connect SCSI tape drives, using device number 580 for example)

$ awsmount 580 -m /dev/sg3 connect SCSI tape drive

4.1.18 The awsstart command

The awsstart command starts zPDT operation by creating a z System environment.

awsstart [--noosa][--map] file-name [--clean] [--localtoken]

Where:

--noosa creates a zPDT environment without any OSA components.

--map is optional before the devmap file name.

file-name is the name of a device map file.

--clean causes all previous logs and traces to be deleted.

--localtoken causes a local USB token to be used, ignoring any remote license servers.

Use of the --noosa parameter is unusual and should be done only at IBM direction. zPDT
maintains a variety of logs and traces in the ~/z1090/logs directory. Note that this is a
subdirectory of the userid that starts zPDT. The contents of the logs directory can grow over
time. If no zPDT problems are under investigation, using the --clean parameter ensures that
only currently relevant logs and traces (from the zPDT instance just being started) will appear
in the directory.6

A zPDT system may be configured to use a remote license manager. If the owner wants to
temporarily use a local token without changing the remote license manager configuration
details, the --localtoken option may be used. The details may be found in “zPDT licenses” on
page 149.

The only defined return value is zero. An example of the command is as follows:

$ awsstart devmap3 --clean

4.1.19 The awsstat command

The awsstat command queries the status of emulated I/O devices. zPDT must be operational
when using this command.

awsstat [-i [n-seconds]] [device-list] [-s [pid|addr|subchan|mgr|busy]]
 [--sort [pid|addr|subchan|msg|busy]]

6 zPDT automatically manages the logs; use of the --clean option is not normally necessary.
Chapter 4. zPDT commands 63

Where:

-i n-seconds indicates the list should be repeated every n-seconds. If the n-seconds
parameter is not provided, the default is 400 seconds.

device-list is list of device numbers. If no device-list is provided, all defined emulated
devices are listed. A range of device numbers may be specified, or the name of a device
manager.

-s or --sort may be used to sort the awsstat output according to the indicated criteria. By
default it is listed in subchannel order.

The device-list may use three- or four-digit hexadecimal operands. These are the device
numbers (“addresses”) defined in the current devmap. The output display for emulated disk
devices includes the current head position (cylinder, track) on the device.

If the interval option (-i) is used, there is a help panel (accessed by entering h or ?) that allows
the output to be sorted. Entering q during an interval terminates the command.

The defined return values are as follows:

0 Command complete.
-2 Unable to locate or open devmap.
-3 Unable to access shared device status memory.
-4 Insufficient memory to initialize the command.
-5 Unable to collect device status.

An example of the command and resulting output is as follows:

$ awsstat
Config file: /home/ibmsys1/aprof9 3270port: 3270 Instance: ibmsys1
DvNbr S/Ch --Mgr--- IO Count --PID-- ------Device information-------------
0700 0 AWS3274 141 4315 IP-::1
0a80 5 AWSCKD 335300 4449 /z/Z9RES1

The S/Ch column lists the subchannel number (internal to zPDT). Each device is represented
by a Linux process and the process IDs are listed. The IO Count field is the number of SSCH7
commands issued to the device since the last IPL. The PID number is the base Linux process
number that is emulating the device.

$ awsstat a80-a85 (a range of device numbers)
$ awsstat awsckd (all devices owned by this device manager)

4.1.20 The awsstop command

The awsstop command ends zPDT operation. This operation ends abruptly, with no warning
to the z System operating system. You would normally shut down your z System operating
system in a orderly manner before using awsstop.

awsstop

There is no return value. An example of the command is as follows:

$ awsstop

7 SSCH is the “Start Subchannel” instruction for System z. Counting I/O operations can be a fuzzy topic due to
command chaining in channel programs or queued I/O devices.
64 IBM zPDT Reference and Guide

4.1.21 The card2tape command

The card2tape command copies a Linux file to an emulated tape volume, in card image
format. zPDT need not be running to use this command.

card2tape [-c] [-a] inputfile outputfile
 [--compress] [--ascii]

Where:

-c or --compress causes the output awstape file to be compressed.

-a or --ascii indicates the input file is ascii and causes the output to be translated to
EBCDIC.

The compression option saves space in the emulated output file, but is not compatible with
other platforms that may use awstape files. It does not indicate the use of hardware tape
compaction, such as IDRC. The output is in 80-byte records, blanks appended to input
records if necessary. Standard tape labels are not created. If the input file length is not a
multiple of 80 then the -a option must be used.

The default conditions for ASCII to EBCDIC translation are the same as used for the awsrdr
device manager. The -a or --ascii parameters may be used to force translation. The
EBCDIC/ASCII translation table used cannot be changed.

No return values are defined. An example of the command is as follows:

$ card2tape --ascii myfile.txt myfile.awstape

4.1.22 The card2txt command

The card2txt command creates an ASCII text file from an EBCDIC input file in card format.
zPDT need not be running when this command is used.

card2txt input-file output-file

Where:

input-file is an EBCDIC file that must be an exact multiple of 80 bytes long.

output-file is the name of the Linux text file.

The input file is read in 80-byte blocks and each block is assumed to be a card record.
Trailing blanks are then removed from each 80-byte block and a NL (New Line) character
added, as used for a Linux text file. The EBCDIC/ASCII translation table used cannot be
changed.

No return values are defined. An example of the command is as follows:

$ card2txt carddeck.ebc file23.txt

4.1.23 The ckdPrint command

The ckdPrint command dumps (prints) the contents of an emulated disk drive (such as a
3390) to Linux stdout. zPDT need not be running when this command is used.

ckdPrint emulation-file-name

Where:

emulation-file-name is the name of the Linux file that contains the emulated disk.
Chapter 4. zPDT commands 65

The program prompts for the range of tracks to dump. These are entered as four decimal
numbers separated by blanks. The numbers, in sequence, are as follows:

� The starting cylinder number
� The starting head number
� The ending cylinder number
� The ending head number

After dumping the specified tracks, the prompt is repeated. Entering a null line ends the
program. To terminate the program, use Ctrl+C. Count, key, and data fields are shown for
each block on the track (or tracks) that are dumped.

No return values are defined for this command. An example that dumps the contents of the
first two tracks (track 0 and track 1) of the first cylinder (cylinder 0) is as follows:

$ ckdPrint /z/Z9DIS1
DeviceType-3390, Cylinders-3339, Tracks/Cyl-15, TrkSize-56832
Input extent in decimal -- CC-low HH-low CC-high HH-high
0 0 0 1

4.1.24 The clientconfig command

The clientconfig command provides an interactive menu function to assist in configuring a
remote license server and a Unique Identity Manager (UIM) that provides consistent z
System serial numbers. This command must be run as root. zPDT need not (and probably
would not) be operational when using this command.

clientconfig

A description of the command use is found in “zPDT licenses” on page 149.

4.1.25 The clientconfig_authority command

The clientconfig_authority command adds a Linux userid or removes a Linux userid from
a list of userids that may issue the clientconfig command. Normal use of clientconfig
requires the user to operate as root. The clientconfig_authority command allows the
installation to avoid use of root when changing license server configurations. The
clientconfig_authority command itself must be run as root, but it is used only once for a
given userid. zPDT need not be operational when using this command.

Once a userid is authorized with this command, he would use the Linux sudo command to
execute clientconfig.

clientconfig_authority [-a | -d] userid

-a adds the indicated userid to the list of userids that are allowed to issue
 the clientconfig command.
-d removes the indicated userid from this list.

A command example is as follows:

clientconfig_authority -a ibmsys1

4.1.26 The clientconfig_cli command

This command provides a Linux command-line interface (non-interactive) for the
clientconfig. The command-line interface could be used in a Linux script, if desired. You
66 IBM zPDT Reference and Guide

must be root to use this command. zPDT need not be operational when using this command.
The syntax is as follows:

clientconfig_cli [-g1s1 xxx] [-g1s2 xxx] [-g2s1 xxx] [-g2s2 xxx]
 [-usc xxxx] [-usm y|n] [-l]

Where:

-g1s1 specifies a Gen1 license server, using a numeric IP address or a domain name.

-g1s2 specifies a backup Gen1 license server, using a numeric IP address or a domain name.

-g2s1 specifies a Gen2 license server, using a numeric IP address or a domain name.

-g2s2 specifies a backup Gen1 license server, using a numeric IP address or a domain name.

-usc specifies a UIM server (numeric or domain name). It defaults to the same address as the
license server - the Gen2 server if both Gen2 and Gen1 are specified.

-l request a display of the currently configured license servers.

There must be a space between a “flag” and the operand of that flag.

A Gen1 or Gen2 server (or both) must be specified.

Command examples are:

clientconfig_cli -g1s1 my.remote.licenses.net
clientconfig_cli -g2s1 192.168.1.107 -g2s2 123.321.111
clientconfig_cli -l

4.1.27 The cpu command

The cpu command selects the default CP that is the target for subsequent zPDT commands.
zIIPs, zAAPs, and IFLs are considered CPs for this function. zPDT must be operational to use
this command.

cpu cp-address

Where:

cp-address is the number of the CP that becomes the default target.

CPs are numbered starting with 0 and increasing by one for every CP (or zIIP or zAAP or IFL)
that is defined in the processors statement of the devmap. The default target is CP number
zero. Each CP has its own registers, active address space, and so forth. This command
typically is used in order to examine registers and memory in a particular CP.

The defined return codes are as follows:

0 The default CP was changed.
12 The specified CP address is not valid.
16 Unable to initialize the manual operations interface.

An example of using the command is as follows:

$ cpu 1 (select second CP as the default CP, which is CP number 1)
$ stop (place default CP in stopped state)
$ d psw (display PSW of the default CP)
Chapter 4. zPDT commands 67

$ start (start the default CP again)

4.1.28 The d command

The d (display) command displays CP information, including registers, memory, and
architecture mode. This information is displayed from the default CP, as set by the cpu
command. CP 0 is the initial default CP. zPDT must be operational to use this command.

d {r }
 {p | psw }
 {pfx }
 {g | gn }
 {y | yn }
 {yc }
 {x | xn }
 {z | zn }
 {vphex-addr[.]hex-len | []hex-len }
 {vshex-addr[.]hex-len | []hex-len }
 {vhhex-addr[.]hex-len | []hex-len }
 {vahex-addr[.]hex-len | []hex-len access-reg }
 {[t]hex-addr[.]hex-len | []hex-len] }
 {vr | vr[m] (m=0-31) }
 {lso }
 {hn }

Where:

r displays the current architecture mode.

p or psw displays the current PSW.

pfx displays the prefix register.

g or gn displays the contents of the general purpose registers. If a particular register is not
specified (by the n parameter) then all are displayed.

y or yn displays floating point registers.

yc displays the floating point control register.

x or xn displays control registers.

z or zn displays access registers.

h displays subchannel information for subchannel n. This option is primarily for IBM use.

lso displays the leap second information block.

hex-addr is an address in memory.

.hex-len is the amount of memory to be displayed (in hexadecimal). If a period precedes
the length, the period must immediately follow the address. A blank separating the
address and length (instead of a period) may be used. The length is in hexadecimal.

vp displays primary virtual memory.

vs displays secondary virtual memory.

vh displays the home address space virtual memory.

va displays virtual memory via an access register, which must be specified.

vr displays one or more vector registers (z13 and later).

access-reg is the number of an access register.
68 IBM zPDT Reference and Guide

t (just before a real address) indicates both hex and character displays are wanted.

A memory address not prefixed with vp, vs, vh, or va displays data at the real memory
address.8 Memory is displayed on 32-byte boundaries. If the specified address is not on a
32-byte boundary, the next lowest 32-byte boundary is used. Each memory line displayed
ends with the protect key for that memory. As a general statement, the CP should be in a
stopped state before any of these display functions are used.

The vp prefix can be shortened to v. Note that a hexadecimal length is separated from the
address with a period; a decimal length is separated with a blank.

A virtual address is meaningful only if an address space is active at the instant of the display.9
When z/OS is in a wait state there may be no active address spaces. As a general statement,
these commands are not useful for application programming debugging unless there is a way
to stop the CP while the application is actively being executed, with the appropriate virtual
memory translation tables active.

The leap second information block is described in Chapter 20, “Server Time Protocol (STP)”
on page 321.

The d psw command is most useful for examining disabled-wait-state codes.

The return values are as follows:

0 Command complete.
30 No arguments specified.

Examples of use are as follows:

$ d psw (display PSW)
$ d g2 (display contents of general purpose register 2)
$ d 461244 32 (display x’32’ bytes at real address x’461244’)
$ d 461244.C0 (display x’c0’ bytes at indicated address)
$ d v458332 100 (display x’100’ bytes at indicated virtual address)
$ d vr (display all 32 vector registers)
$ d t150 10 (display 16 bytes at read address 150, with EBCDIC)

4.1.29 The display_gen2_acclog command

The display_gen2_acclog command displays the access log maintained internally by a Gen2
license server. The displayed data is sent to Linux stdout and can be redirected to a normal
Linux file if desired. Displaying the log data does not delete it. The Gen2 license server trims
the log at intervals. This command is functional only on a Gen2 license server; it cannot be
used on a Gen2 client system.

 display_gen2_acclog

There are no operands

4.1.30 The fbaPrint command

The fbaPrint command dumps (prints) the contents of one or more sectors on an FBA
emulated disk drive. zPDT need not be active to use this command.
8 Normally, the real and absolute addresses are the same. If the real address is reassigned by the prefix register

then both the real and absolute addresses are displayed.
9 That is, if the appropriate segment tables (or region tables) for the target address space are indicated by the

appropriate control registers for the default CP.
Chapter 4. zPDT commands 69

fbaPrint emulation-file-name

Where:

emulation-file-name is the name of the Linux file containing the FBA volume.

The command will prompt for the range of block numbers to be dumped. These are entered
as two decimal numbers, separated by spaces. When the dump is complete, the prompt is
issued again. A null input line will terminate the command.

No return values are provided. An example of the command is as follows:

$ fbaPrint /z/VSE123
0 1 (Dump two blocks)

4.1.31 The find_io command

The find_io command is used to identify potential OSA ports.

$ find_io
FIND_IO for "ibmsys1@linux-8jfl"
 Interface Current MAC IPv4 IPv6
 Path Name State Address Address Address
------ ---------------- ---------------- ----------------- ---------------- --------
 F0 eth0 UP, NOT-RUNNING 50:7b:9d:ac:73:45 * *
 F8 wlan0 UP, RUNNING e4:b3:18:c9:11:a2 192.168.1.108 xxxxxx
 A0 tap0 DOWN 02:a0:a0:a0:a0:a0 * *
 A1 tap1 DOWN 02:a1:a1:a1:a1:a1 * *
 A2 tap2 DOWN 02:a2:a2:a2:a2:a2 * *
 ...

 Interface Current Settings
 Path Name RxChkSum TSO GSO GRO LRO RX VLAN MTU**
------ ---------------- ---------------- ----------------- ---------------- --------
 F0 eth0 On* On* On* On* Off On* 1500
 F8 wlan0 Off Off On* On* Off Off 1500

 * Enabling these functions may lead to poor zPdt Performance,
 please refer to your zPdt documentation for details.

 ** To Enable Jumbo Frame Support, this MTU value and the MTU value for the
 Host Operating System must be set to > 1500.
End of FIND_IO

A path (or CHPID) name is shown for most (but not necessarily all) LAN interfaces. The paths
have names such as F0, F1, A0, and so forth. Interface names are shown, for example eth0,
tap0, wlan0. A path name is normally specified for the awsosa device manager; in some
cases the interface name may be needed if no path name is shown by the find_io command.
Notice that all Linux LAN interfaces, whether enabled or not, are detected. This might cause
default path assignments to differ from previous zPDT releases.

The other data shown (State, MAC address, IPV4, and IPv6 addresses) is informational only.
The IP addresses apply only to the base Linux. z/OS (or another z System operating system)
could also address the interfaces with completely different IP addresses. All LAN interfaces
known to Linux are shown; some of these may not be relevant or tested for zPDT usage. The
MAC addresses for tap devices are artificial.

The ethtool parameters shown (TSO, GSO, GRO, LRO, RX VLAN) can affect performance.
The MTU10 size shown is the Linux (not z/OS) MTU, but it should be coordinated with the
70 IBM zPDT Reference and Guide

z/OS (or z/VM or z/VSE) MTU. Chapter 7, “LANs” on page 119 goes into more detail about
these parameters.

4.1.32 The hckd2ckd and hfba2fba commands

These commands deal with the migration of DASD volumes from a remote system to a zPDT
system. In this context “migration” simply means “copy.” The are two client commands used
with the migration utilities are:

hckd2ckd Used with both z/OS and z/VM to migrate a CKD DASD volume.
hfba2fba Used only with z/VM to migrate an FBA DASD volume.

zPDT need not be operational when using these commands. The general syntax of the client
commands (entered on the Linux client machine, using a normal Linux command window) is
as follows:

hxxx2xxx host[:port] outfile [-v xxxxxx][-u aaaa]
 [--volser xxxxxx][--unit aaaa]
Where:

host is the TCP/IP name of the system with the matching server program. This may be a
dotted-decimal address or a domain name that can be resolved by Linux TCP/IP.

:port is a TCP/IP port number to be used by both the client and server program. It
defaults to 3990. Note: recent experience indicates that the port number does not always
default correctly; we suggest you always include the port number in the command.

outfile is a file name (on the current Linux system) where the migrated volume is to be
placed (in awsckd or awsfba format).

-v or --volser indicates the 3380/3390 volume (on the remote z/OS system) that is to be
copied (migrated).

-u or --unit indicates the address (device number) of the volume that is to be copied
(migrated).

Either the -u or -v parameter must be supplied, but not both. These commands are described
in Chapter 15, “DASD volume migration” on page 281.

Examples of commands that could be used to run the client are as follows:

$ hckd2ckd 192.168.1.99:3990 /z/VOL123 -v VOL123
$ hckd2ckd BIG.ZOS.ADDR:3990 /z/VOL678 -u A8F
$ hckd2ckd 192.168.1.99:3990 /z/host.WORK23 -v WORK23

4.1.33 The interrupt command

The interrupt command creates an external interruption for a CP. zPDT must be operational
when using this command.

interrupt [cp-number]

Where:

cp-number is the number of the CP (or zIIP, zAAP, or IFL). If not specified, the default CP
number set by the cpu command is used.

The effect of an external interrupt depends on the z System operating system being used.
The return values are as follows:

10 MTU is Maximum Transmission Unit, which is the number of bytes sent as a single unit over the LAN.
Chapter 4. zPDT commands 71

0 External interrupt was generated.
12 CP address was not valid.
16 Unable to initialize the manual operations interface.

Examples of use are as follows:

$ interrupt (interrupt the default CP)
$ interrupt 1 (interrupt CP number 1)

4.1.34 The ipl command

The ipl command starts the process of loading an operating system (or a stand-alone utility
program). zPDT must be operational when using this command.

ipl device-number [parm parm-value] [gprparm xxxx] [clear]

Where:

device-number refers to a device number (“address”) in the devmap that contains the
initial load program for the operating system.

parm-value is a string of up to eight characters that provides additional information for the
operating system being loaded.

clear causes z System memory to be zeroed before loading the operating system.

gprparm provides a string of characters that are inserted into the general purpose
registers (as EBCDIC characters and using 32-bit registers), starting with register 0,
placing four characters in each register. The keyword can be entered as gpr_parm.

The ipl function is started on the default CP (which must not be a zIIP or zAAP), which may
be set by the cpu command. The use of a parm-value completely depends on the operating
system being used, and how that operating system is configured. As a general statement, it is
not necessary to clear memory before loading an operating system.

The device indicated by the device-number must have IPL text installed; this installation is
normally done by an operating system utility function. There is a fixed 20-second timeout
period for the IPL function to complete, after which a device error message is issued;
however, the IPL function continues after the message is issued.

The gprparm function was carried forward from much earlier systems and has no known use
today.

Command return values are as follows:

0 IPL function started.
16 Unable to initialize the manual operations interface.
99 The device number is not valid.

Examples of command usage are as follows:

$ ipl 580
$ ipl 0a80 parm 0a82cs clear

4.1.35 The ipl_dvd command

The ipl_dvd command emulates IPLing a DVD from the Hardware Management Console
(HMC) on a larger z System. The DVD must contain files in a specific format for this function
to be used. At the time of writing, the only known uses are with an optional form of z/VM
72 IBM zPDT Reference and Guide

system distribution, some Linux for z System distributions, and a form of z/VSE distribution.
zPDT must be operational for this command to be used.

ipl_dvd file-name [-q] [-c aaaa]
 [--console aaaa]

Where:

file-name is the fully qualified name of the .ins file on the DVD.

-q causes the command to run in quiet mode.

-c (or --console) specifies the address (device number) of a local 3270 (in the active
devmap). This 3270 is then used as an HMC 3270 session. (At the time of writing, this
function was not working with z/VM 6.2 and later. Instead, the int3270port function in the
[system] stanza of the devmap can be used.) The use of the -c or --console is deprecated.
This option might not be present in future releases.

If -q is not specified, the first line of the .ins file is displayed and the user is prompted for a
continuation signal.

The default z System processor (normally the one listed first in the processor statement in the
devmap) must be a standard cp. It cannot be an IFL. (This is a departure from standard z
System architecture.)

The return values are as follows:

0 Command completed.
8 The .ins file is invalid.
12 The .ins file was not specified.
16 Initialization for manual operation failed, or unable to open .ins file.

An example of use is as follows:

$ ipl_dvd /media/530_GA_3390_DASD_DVD/cpdvd/530vm.ins

4.1.36 The ldk_server_config command

This command may be used if a remote Gen2 license server is used to provide licenses to
your client. It is a command-line alternative to the interactive clientconfig command. You
must be root to use this command. zPDT need not (and probably is not) active when this
command is used. The syntax is:

ldk_server_config [server.url.address]
 [-d]
 [-L]

Where:

server.url.address is the address of your Gen2 server. The address may be a URL
(domain name) or a numeric IP address. Multiple addresses, separated by spaces, may
be listed if you have alternate Gen2 servers.

-d indicates that the currently active Gen2 server addresses are to be listed.

-L indicates that no remote Gen2 server is to be used.

Examples are:

ldk_server_config perf.lab.ibm backup.lab.ibm
ldk_server_config 192.168.1.107
ldk_server_config -d
Chapter 4. zPDT commands 73

This command is deprecated. The same functions may be done with the clientconfig_cli
command.

4.1.37 The listVtoc command

The listVtoc command provides a detailed listing of the VTOC of a z/OS CKD volume. It
assumes the emulated CKD volume has been initialized with a label and a z/OS compatible
VTOC. This command may be used while zPDT is operational, but it would normally be used
when zPDT is not operational. The syntax is as follows:

listVtoc ckd-file-name [ckd-file-name] ..

Where:

ckd-file-name is the Linux name of a file containing an emulated 3390 or 3380
volume.

If all you want are the data set names on the volume, you can pipe the output of listVtoc to
grep to find records containing DSNAME.

Examples of use are as follows:

$ listVtoc /z/ZCRES1
$ listVtoc /z/WORK02 | grep -i DSNAME

4.1.38 The loadparm command

The loadparm command sets an eight-character IPL parameter value that can be read by a
special z System instruction. This is also known as a load parameter; IPL and load are used
as synonyms in this context.

loadparm {value }
 {-d | display} (note: there is no minus sign before ‘display’)

Where:

value is the character string to be set (up to eight characters).

-d or display displays the current value.

This value set by this command is available to the operating system during the next IPL. If an
IPL parameter is provided as part of an ipl command, it overrides any existing loadparm
value and is stored as the current value. A parameter set this way is maintained only during
zPDT operation; it is not retained across multiple zPDT startups.

Return values are as follows:

0 The IPL parameter was set or displayed.
16 Unable to initialize the manual operations interface.

Examples of command usage are as follows:

$ loadparm 0A8200P
$ loadparm -d

4.1.39 The managelogs command

The managelogs command assists in maintaining summary, trace, and log files in the zPDT
logs directory. As a general rule, zPDT maintains these files without assistance, and the
74 IBM zPDT Reference and Guide

--clean option of the awsstart command can be used to erase all these files. The managelogs
command is most useful when working with IBM (or a business partner) while investigating a
potential zPDT problem. zPDT should not be operational when this command is used.

managelogs {file-name }
 {-s snap-id }
 {-t date }

Where:

file-name removes the summary record and associated file.

snap-id removes all summary records and files associated with the specified snap ID.

date removes all summary records and files older than the indicated date. The date format
is yyyy/mm/dd.

The rassummary command may be used to determine existing snap ID numbers. There are no
return values for this command.

4.1.40 The memld command

The memld command is used to write the contents of a Linux file into z System memory,
starting at a specified address. zPDT must be operational when using this command.

memld file-name [address]

Where:

file-name is a fully qualified Linux file name.

address is a z System hexadecimal address. The default is address zero.

Some Linux for z Systems distributions can be installed by loading various files into z System
memory and then executing a z System restart function.

Return values are as follows:

0 Command complete.
12 File name was not specified.
16 Manual operations initialization failed.
69 The file was not found.

An example of the command is as follows:

$ memld /tmp/initrd.bin 100000 (meaning address x’100000’)

4.1.41 The mount_dvd command

The mount_dvd command identifies the Linux mount point for a DVD (or CD) that is to be
processed as if it were mounted in the DVD drive of a z Systems HMC. zPDT must be
operational when using this command.

mount_dvd complete-path

Where:

complete-path is the path name to the DVD, but without specifying a particular file name.

This command has a very limited purpose. It is normally used when installing an RSU volume
(DVD) associated with z/VM installation.
Chapter 4. zPDT commands 75

An example of the command is as follows:

$ mount_dvd /run/media/ibmsys1/zVM_RSU_name/

4.1.42 The msgInfo command

The msgInfo command provides more information about zPDT messages. zPDT need not be
active when this command is used.

msgInfo message-number

Where:

message-number is the number of a zPDT message.

No return codes are defined for this command. An example of usage is as follows:

$ msgInfo AWSCHK208I
AWSINF010I Format:
AWSINF013I AWSCHK208I Check complete, %d error%s, %d warnings detected.
AWSINF013I
AWSINF011I Description:
AWSINF013I The DEVMAP check is complete.
AWSINF013I
AWSINF012I Action:
AWSINF013I Informational message only. No corrective action needed but
AWSINF013I if errors are present the DEVMAP cannot be used to start system.

All message numbers are in the form AWScccnnns, where:

ccc is the component code issuing the message.
nnn is the message number within the component.
s is the message severity (Debug, Information, Warning, Error, Severe, Terminal)

The message code specified on the msgInfo command can omit the AWS prefix and the
severity code. For example, msgInfo chk082 is sufficient. There is also an environment
variable named Z1090_MSG to control message formatting.11 It may be set to FULL (the
default), CODE (which will only print the message number and no text), TEXT (which prints the
message text and no code) and SHORT (which drops the AWS prefix on the message number).

4.1.43 The oprmsg command

The oprmsg command provides input to the z System through the SCLP operator message
interface. (This interface is also known as the HMC console or the hardware console.) zPDT
must be operational when using this command.

oprmsg {text}

Where:

text is the message to be sent to the z System operating system. If it contains any special
characters (such as parentheses), the message should be inclosed in single quotation
marks.

The hardware console is used by z/OS if all other consoles fail. It can be used by z/VM, and
may be used by Linux for z Systems. In some cases, the operating system may automatically
direct output to the hardware console. In this case, the output appears in the Linux window

11 This environmental variable can be set with an export statement in the Linux shell.
76 IBM zPDT Reference and Guide

where the awsstart command was issued. Using an oprmsg command from another Linux
window may produce confusing results because the response to the command can appear in
the original awsstart Linux window.

The return values are as follows:

0 The message was sent to the SCLP operator interface.
12 No input text was found.
16 Unable to initialize the manual operation interface.
32 Unable to initialize the SCLP message interface.

Examples of use are as follows:

$ oprmsg 'V CN(*),ACTIVATE'
$ oprmsg 'V 700,CONSOLE'
$ oprmsg 'D A,L'

4.1.44 The pdsUtil command

The pdsUtil command is a Linux command that reads (or rewrites) members of a z/OS
partitioned data set. z/OS is normally not operational when this command is used. The target
data set must be a PDS (not PDSE) with FB records. This command cannot change the
length or number of records in the PDS member. Record length is not limited to 80 bytes. The
general operation is to extract the PDS member (to Linux), edit the Linux file, and then
overlay the original PDS member with the changed data. Automatic ASCII/EBCDIC
translation is provided.

The syntax is as follows:

pdsUtil ckd-file-name PDS-name [(mem-name)|/mem-name] [Linux-file-name]

 [-e|-x|--extract] |
 [-o|--overlay|-r|-replace] | [-t|--trans|--translate <code>]
 [-l|--list] |

 [-m|--mbr|--member <mem-name>]

Where:

ckd-file-name is the Linux name of the file containing the emulated volume.

PDS-name is the z/OS name of the partitioned data set.

mem-name is a member name in the partitioned data set.

Linux-file-name specifies a Linux file to be created (for extract) or written
to the PDS member (for overlay or replace). The default is mem-name.txt.

code is 037/437 or 1047/437 for the code tables to be used for EBCDIC/ASCII
conversion. 037/437 is the default; 1047/437 might work better for
international characters.

The PDS member name may be specified in any one of three ways. Using parenthesis
around the member name requires that the parenthesis be escaped (so that the Linux shell
does not try to process it). If a Linux file name for the member is not specified, the default
name is the member name with a .txt suffix. The default name is uppercase or lowercase,
depending on how the member name is specified in the command. (The same PDS member
is accessed, regardless of case.)
Chapter 4. zPDT commands 77

The PDS record length and the number of records in the member cannot change. Only F or
FB records may be used. As is implied in the syntax, writing the member back to the PDS
performs an update-in-place function.

We strongly suggest that you practice using pdsUtil on a test PDS before using it for a critical
dataset. Also, pdsUtil operates in your Linux system and has no knowledge of any RACF
protection that might apply to the target PDS.

Examples of usage are as follows:

$ pdsUtil /z/WORK02 rb.admin.lib --list (list the member names)
$ pdsUtil /z/WORK02 rb.admin.lib/ICKDSF --extract (creates ICKDSF.txt)
$ pdsUtil /z/WORK02 rb.admin.lib/ickdsf --extract (creates ickdsf.txt)
$ gedit ickdsf.text (use Linux editor)
$ pdsUtil /z/WORK02 rb.admin.lib/ickdsf --overlay
 (Since no Linux file was named, pdsUtil used ickdsf.txt)
$ pdsUtil /z/WORK02 rb.admin.lib/ickdsf --overlay /tmp/myickdsf
 (This is valid, but a dangerous example. The specified Linux file,
 /tmp/myickdsf must be a valid overlay for the target member.)
$ pdsUtil /z/rb.admin.lib\(ickdsf\) --extract (must “escape” parenthesis)
$ pdsUtil /z/rb/admin/lib --extract --mbr ickdsf (another way to specify)

4.1.45 The query command

The query command displays the state of the CPs. zPDT must be operational when using this
command.

query {cp-number }
 {all }

Where:

cp-number is the number of the target CP. The default is the CP number that was set with
the cpu command.

all indicates that the state of all CPs should be displayed.

The return values are as follows:

0 Query complete.
12 CP address is not valid.
16 Unable to initialize the manual operation interface.

An example of usage is as follows:

$ query all
Status for CPU 0 (GP ,Primary, Operational): Running

The GP in the response indicates a normal CP, as opposed to a zIIP, zAAP, or IFL.

4.1.46 The query_license command

The query_license command displays the current zPDT license status for Gen2 licenses,12
including the identity of the remote license server. zPDT need not be operational to use this
command, but the user must have configured a Gen2 client environment.

query_license

12 See Chapter 8., “zPDT licenses” on page 149 for information about Gen2 licenses.
78 IBM zPDT Reference and Guide

There are no operands. This command is not relevant for local token usage or for a remote
Gen1 license server. This command may be used on both Gen2 clients and Gen2 servers.
For a client, only information relevant to that client is displayed. For a server, more general
information is displayed; the display is described in “Managing the Gen2 server” on page 159.

4.1.47 The rassummary command

The rassummary command displays information about log and trace files in the ~/z1090/logs
directory of the Linux user that started this instance of zPDT. Usually, this command is used
when working with IBM (or a Business Partner) while investigating a potential zPDT problem.
zPDT need not be running when this command is used.

rassummary [-s] [-t] [-d directory-name] [-c comp-name] [-u subcomp-name]

 [-b begin-time] [-e end-time] [-r rec-type]

Where:

-s indicates only snap records are to be displayed.

-t indicates records are to be displayed in chronological order.

-d directory-name overrides the normal logs directory name.

-c comp-name indicates only records about the indicated component are to be displayed.
This option is intended only for IBM internal use and is not further documented.

-u subcomp-name indicates only records about the indicated subcomponent are to be
displayed. This options is intended only for IBM internal use and is not further
documented.

-b begin-time indicates only records after the indicated date/time are to be displayed.
The format is "yyyy-mm-dd" or "yyyy-mm-dd hh:mm:ss" (these parameters must be
enclosed in quotation marks).

-e end-time indicates only records before the indicated date/time are to be displayed. The
format is the same as for begin-time.

-r rec-type indicates that only the specified record type is to be displayed. Valid types
are TRACE, LOG, LOG_REGBUF, QD_DUMP, LOG_EVENT, LOG_APPEND, and
QUICK_DUMP. Multiple operands may be separated with a comma.

Several options may used to limit the amount of output. IBM service (or an IBM Business
Partner providing zPDT service) will supply component and subcomponent names needed to
investigate a problem.

The only documented return value is zero. Examples of command usage are as follows:

$ rassummary (This provides the most general summary)
$ rassummary -r LOG
$ rassummary -r LOG -b”2009-03-03 12:00:00 -e”2009-03-04 23:59:59”

4.1.48 The ready command

The ready command creates an attention or ready interrupt for the indicated device. It is most
commonly used with a emulated tape drive to indicate that a new tape volume (which is
actually a Linux file) has been mounted or made ready. In some cases ready may be useful
with an emulated card reader or emulated local 3270 terminal. zPDT must be running in order
to use this command.

ready device-number
Chapter 4. zPDT commands 79

Where:

device-number is the “address” assigned to the emulated device in the devmap.

The return value is always zero. An example of the command is as follows:

$ ready 580 (Device 580 might be an emulated tape drive)

4.1.49 The restart command

The restart command causes a PSW restart operation on the specified CP. zPDT must be
operational when using this command.

restart [CP-number]

Where:

CP-number specifies the CP. If this operand is not specified, then the CP number set with
the cpu command is used.

This command is seldom used. In some cases it may be used to assist an operating system
that is stuck in an unusual situation such as a restartable disabled wait. It is also used to
dump a z/VM system and to communicate with some stand-alone utilities.

The return values are as follows:

0 The operation is complete.
12 The CP number is not valid.
16 Unable to initialize the manual operation interface

Examples of usage are as follows:

$ restart (restart default CP, as set by the cpu command)
$ restart 2

4.1.50 The scsi2tape command

The scsi2tape command copies a tape volume (mounted on a SCSI tape drive) to a Linux file
in awstape format. Linux files in awstape format may be managed and read (by the awstape
device manager) as though they were tape volumes on a real tape drive. zPDT does not need
to be running to use this command.

scsi2tape [-c][-i][-e nn][-s] input-dev out-file
 [--compress][--info][--eof nn][--scan]
 [-n]
 [--noinfo]

Where:

-c or --compress causes the output awstape file to be written in a compressed format.
This is not equivalent to hardware tape compaction, such as IDRC.

-i or --info displays information about each tape file as it is processed. This is the default
operation.

-n or --noinfo suppresses tape file information.

-e nn or --eof nn specifies the number of consecutive tape marks that indicate the logical
end of the tape. The default is two.

-s or --scan causes the input tape to be scanned, with information displayed (unless -n or
-noinfo is specified). No output file is written.
80 IBM zPDT Reference and Guide

input-dev is the Linux name for the tape drive, such as /dev/st0.

out-file is a Linux file name where the awstape formatted file will be written.

In principle, a z System application requiring tape input does not know whether a “real” tape
volume (on a SCSI tape drive) or an emulated tape volume (awstape file on an emulated tape
drive) is being used. In practice, where repeated mounting and access to the tape may be
needed, it may be more convenient to convert the “real” tape volume to an emulated tape
volume. Mounting on an emulated tape drive is often much faster than mounting a real tape
on a SCSI tape drive.

The optional compression format is unique to zPDT operation. It is not compatible with
awstape formats on other platforms and is not related to any type of hardware tape
compression. The Linux name of the SCSI tape drive for this command is usually in the
/dev/stn group and not in the /dev/sgn group.

Return values are as follows:

0 Function completed without errors.
1 Unable to allocate I/O buffers.
2 Input device not specified, or unable to open input device.
3 Output file not specified, or unable to open output file, or output

file is write protected.
4 Operation terminated due to an I/O error.

Examples of command usage are as follows:

$ scsi2tape -n /dev/st0 tape01.awstape
$ scsi2tape -e 4 -s /dev/st0

4.1.51 The SecureUpdateUtility command

The SecureUpdateUtility command is used to manage zPDT license lease dates13 in the
zPDT token. zPDT must not be running when this command is used. (Note that Linux warning
messages are issued a month before the lease date in the token expires.) You must have
root authority and be in the /usr/z1090/bin directory before issuing this command.14

SecureUpdateUtility -r filename (use an arbitrary filename)
SecureUpdateUtility -u filename.upw

The first form (-r) writes a request (.req) file for the token currently connected to the
computer. Only one token should be connected when using this command. This request file is
unique to the token currently connected. Note that some users (typically with 1091 tokens) do
not require creation of a request file. Your zPDT supplier will determine if a request file is
needed.

The second form (-u) applies the update file named in the command to the currently
connected token. This update file typically extends the lease date in the token. The token
should be unplugged for at least 10 seconds after an update is applied.

Important: This command is replaced with the Z1090_token_update or
Z1091_token_update command for zPDT release GA5 and later. Continue using
SecureUpdateUtility for zPDT releases prior to GA5.

13 Also known as the license expiration dates.
14 The use of root may be avoided by using the SecureUpdate_authority and zpdtSecureUpdate commands.
Chapter 4. zPDT commands 81

The request file is sent to a license processing facility that uses it to create the update file.
The update file is then sent to the user who applies it with the SecureUpdateUtility
command. An update file is unique to a token number and may be used only once. The
license processing facility may return a .upw file, a .zip file, or both. See “Gen1 token
activation and renewal” on page 169 for information about handling a .zip token file. You
must have a .upw file in order to perform the update function with SecureUpdateUtility.

Examples of usage are as follows:

$ cd /usr/z1090/bin (you must be in this directory)
$ su (you must change to root)
SecureUpdateUtility -r myreq (creates myreq.req file in Linux)
 (Send the req file for processing; receive an upw file in return)
SecureUpdateUtility -u myreq.upw (apply the update file)
exit (exit from root)

4.1.52 The SecureUpdate_authority command

The SecureUpdate_authority command adds a Linux userid to, or removes a Linux userid
from, a set of userids that may issue the zpdtSecureUpdate command, which executes the
SecureUpdateUtility, Z1090_token_update, or Z1091_token_update command internally,
without requiring the user to operate as root and be positioned in the /usr/z1090/bin directory.
The SecureUpdate_authority and zpdtSecureUpdate commands allow the installation to
avoid usage of root when updating token licenses. The SecureUpdate_authority command
must be run as root, but it is typically used only once for a given userid.

SecureUpdate_authority [-a | -d] userid
/usr/z1090/bin/SecureUpdate_authority [-a | -d] userid

-a adds the indicated userid to the list of userids that are allowed to issue
 the SecureUpdateUtiluty command.
-d removes the indicated userid from this list.

This command file is installed in /usr/z1090/bin, but this directory is not normally in the PATH
for a root user. For this reason you might use the full path name for the command (unless you
are in /usr/z1090/bin when you issue the command). This command adds a record to the
/etc/sudo file.

A command example is as follows:

/usr/z1090/bin/SecureUpdate_authority -a ibmsys1 (issued by root)

4.1.53 The senderrdata command

The senderrdata command packages zPDT diagnostic information and, optionally, sends the
package to IBM. zPDT need not be running when this command is used.

senderrdata

There are no operands. The command produces menus and prompts; the initial menu is as
follows:

z1090 Error Data Processing Script

Important: The SecureUpdate_authority command allows use of sudo and the
zpdtSecureUpdate command to permit token administration without requiring root
authority. See 13.12, “Security exposures” on page 258 for details.
82 IBM zPDT Reference and Guide

Options:
1 rassummary execute the rassummary command
2 rassummary -s execute rassummary -s
3 FTP/dump snapdata data
4 FTP/dump PE directed data
5 Create configuration information file
6 Logs directory maintenance
7 FTP/dump rassummary created files
8 FTP/dump all files in log directory
9 snapdump

The FTP/dump function provided in several of the options means that information can be sent
(by FTP) to the IBM test case site or it can be retained in a local Linux dump file (which is a
zipped tar file). Data should not be sent to IBM unless a problem record has been opened by
the IBM Business Partner who provided the zPDT system. The Business Partner can provide
assistance in using the various senderrdata options and parameters.

4.1.54 The serverconfig command

The serverconfig command works with an Gen2 server, which must be installed before this
command is used:

serverconfig [] (no operand)
 [-u | --update]
 [-r | --rules]

When the command is used with no operand, it displays a small interactive menu, described
in “Gen2 License server” on page 159, that is used to stop or start server operation or change
log and UIM port numbers. The --rules option displays brief guidelines for the security file
used by the LDK server. The --update option causes the server to reread the security file.
The same functions performed by this command can also be performed using the
serverconfig_cli command, which is not interactive.

 Root authority is not needed to start or stop the Gen2 server operation or logging function.

4.1.55 The serverconfig_cli command

The serverconfig_cli command works with a Gen2 server, which must be installed before
this command is used. You must be root to use this command.

serverconfig_cli [-a[y|n]] [-l[y|n]] [-u]

The -a option enables or disables the Gen2 license server, without completely stopping it. All
connected zPDT systems will stop after a short interval. The -l option enables a server log.
The -u option causes the server to reread the security rules in /opt/IBM/LDK/rules. This
command performs the same functions as the serverconfig command, but in a
non-interactive manner. The functions are explained in more detail in “Gen2 License server”
on page 159.

Example:

serverconfig_cli -ay -u

This example enables the Gen2 license server (which we assume was previously disabled)
and rereads the security rules.
Chapter 4. zPDT commands 83

4.1.56 The settod command

The settod command sets the specified time/date in the z System Time Of Day (TOD) clock
during the next IPL of an active zPDT system. The TOD change is not carried across restarts
of zPDT. When used, this command is normally issued after the awsstart command and
before an ipl command. zPDT normally sets the emulated z System TOD clock to match the
underlying PC TOD clock; this command alters that normal action. A settod command issued
while a z System operating system is active has no immediate effect; it takes effect only
during a subsequent ipl command.

The full syntax is as follows:

settod YYYY/MM/DD-HH:MM:SS
settod YYYY/MM/DD
settod HH:MM:SS (the :SS portion may be omitted)

If both date and time are present, they must be separated with a dash (hyphen) without
blanks between the elements. A time value is expressed in 24-hour notation. The output of
the command shows the adjustment that is made to the default TOD value. The minimum
YYYY value is 1900.

This command does not change the Linux hardware clock value in any way and does not
affect the time stamps that are stored in a zPDT token. This command provides a way to test
z System software at future times (or past times). After the subsequent ipl, the z System
TOD clock is incremented in the normal way, starting at the time/date specified in the settod
command.

Assume the current date and time (in the PC hardware clock) is July 20, 2017 at 1 PM:

$ settod 16:40 (July 20, 2017, 4:40 PM)
$ settod 2012/7/20 (July 20, 2012, 1 PM)
$ settod 2005/1/1-00:00 (January 1, 2005, midnight)

In principle, any portion of the parameter that is omitted is assumed to be the same as the
TOD value in the base Linux system. The date field is processed right to left and the time field
is processed left to right. If a single number with no delimiters is used as the parameter it is
assumed to be a day number. However, we suggest you always enter a full date or time, or
both.

4.1.57 The snapdump command

The snapdump command causes various zPDT diagnostic data and logs to be collected and
written in the ~/z1090/logs directory. zPDT must be running when this command is used. This
command may be used when a zPDT problem situation exists while zPDT is running.

snapdump [-c comp-name[subcomp-name]][-d “desc-text”]

Where:

comp-name is a component name; only information related to this component is obtained.
This option is intended only for IBM internal use and is not further documented.

subcomp-name is a subcomponent name; only information related to this subcomponent is
obtained. This option is intended only for IBM internal use and is not further documented.

desc-text is descriptive text (in quotation marks).

If no options are specified, then information about all active components and subcomponents
is collected.
84 IBM zPDT Reference and Guide

zPDT automatically collects diagnostic information when a zPDT failure occurs. The snapdump
command is intended only for situations where the user observes a zPDT problem that is not
detected by zPDT. This command is not useful for z System operating system problems or
problems with the underlying Linux system.

An example of the command is as follows:

$ snapdump -d “This is a test”

4.1.58 The st command

The st (store) command is used to alter registers or memory in a CP (or zIIP or zAAP or IFL).
zPDT must be operational when using this command. The syntax is similar to that for the d
command.

st {p xxx xxx xxx xxx (expressed as 4 words) }
 {pfx xxx }
 {gn xxx (32 bit register usage) }
 {gxn xxx (64 bit register usage) }
 {yn xxx }
 {xn xxx (32-bit usage) }
 {xxn xxx (64-bit usage) }
 {zn xxx }
 {vrm xxx (z13; m=0..31) }
 {lso (operands explained in “Server Time Protocol (STP)” on page 321)}
 {hex-addr xxx }

Where:

xxx is a hexadecimal value to be stored.

p alters the current PSW.

pfx alters the prefix register.

gn alters the contents of a general-purpose register. A maximum of a 32-bit operand can
be specified.

gxn alters the contents of a general purpose register. Up to 64 bits may be specified.

yn alters the contents of a floating point register.

xn or xxn alters a control register. The first format uses a 32-bit operand and the second
format uses a 64-bit operand.

zn alters an access register.

vrm alters vector register m.

lso alters the leap second information block.

hex-addr is an absolute address in memory.

Only real memory (as opposed to virtual memory) can be addressed by this command.
Memory is altered byte-by-byte, to match the operand. It is possible to display a virtual
address (with the d command), note the real address of the page that is displayed, and then
use the st command to modify memory in the real page. The CP should be in a stopped state
before any of these alter functions are used.

The return values are as follows:

0 Command complete.
-2 No arguments specified.
Chapter 4. zPDT commands 85

Examples of use are as follows:

$ st p FF007AB0 0 0 123456 (set 64-bit PSW)
$ st g2 123 (change low-order 32 bits of GPR2 to x’00000123’)
$ st gx2 123 (change 64 bits of GPR2 to x’0000000000000123’)
$ st 461244 32 (change byte at real address x’461244’ to x’32’)

4.1.59 The start command

The start command starts a CP that was in the stopped state (due to a prior stop command).
zPDT must be operational when using this command.start [CP-number]

 start [all]
 [CP-number]

Where:

CP-number is the target CP number. If this operand is not specified, the CP number set by
the cpu command is used. The constant all may be used instead of a cpu number.

The return values are as follows:

0 Operation complete.
12 CP number is invalid.
16 Unable to initialize the manual operation interface.

Command examples are as follows:

$ start
$ start 1
$ start all

4.1.60 The stop command

The stop command places a CP in the stopped state. It may be restarted with a start
command or a reset function. zPDT must be operational when using this command.

stop [CP-number]
 [all]

Where:

CP-number is the target CP number. If this operand is not specified, the CP number set by
the cpu command is used. The constant all may be used instead of a cpu number.

Generally, a CP is stopped in order to display register or memory contents. In rare cases, it
might be stopped to halt the process of an application or operating system function.

The return values are as follows:

0 Operation complete.
12 CP number is invalid.
16 Unable to initialize the manual operation interface.

Command examples are as follows:

$ stop
$ stop 1
$ stop all
86 IBM zPDT Reference and Guide

4.1.61 The storestatus command

The storestatus command causes certain CP registers to be stored in fixed memory
locations, as defined in z/Architecture. zPDT must be operational when using this command.
This command might be used before taking a stand-alone dump.15

storestatus [CP-number]

Where:

CP-number specifies the target CP. If this operand is not specified, then the CP indicated
by the cpu command is used.

The CP must be in the stopped state (via a stop command) when storestatus is issued. A
storestatus is no longer required before taking a stand-alone dump of z/OS.

An example of the command is as follows:

$ stop all
$ storestatus

4.1.62 The storestop command

The storestop command places the default CP in a stopped state if memory at the indicated
address is altered. zPDT must be operational when using this command. A start command
may be used to resume execution.

storestop hex-address [off | all]

Where:

hex-address is a memory address.

off removes an existing storestop function.

all sets the storestop address in all processors.

The target address is the effective address, which is typically a virtual address but could be a
real address when in DAT-off mode. Only one storestop address can be in use for a CP. A
subsequent storestop changes the address being monitored. The memory alteration is
completed before stop state is entered. A start command may be used to resume program
execution.

The target address is not related to a specific address space. This command is not intended
for routine application debugging. Note that only the CP encountering the subject address is
stopped, even if the all operand was used.

Return values are as follows:

0 The address stop was set.
16 Unable to initialize the manual command interface.
69 The hex address is not valid.
101 No storestop address is set.

This example sets a storestop in the default CP:

$ storestop 4FCC

This example sets a storestop in all CPs:

15 Recent z/OS and z System usage have removed the need for this command. The z System (including zPDT) is
primed by z/OS to perform a store status command before the next IPL.
Chapter 4. zPDT commands 87

$ storestop 3F1002 all

4.1.63 The stpserverstart command

The stpserverstart command is used to start the Server Time Protocol (STP) function
daemons. The STP function is typically used only for a basic sysplex configuration. The
/usr/z1090/binwsCCT file must be customized before this command is used. The same
stpserverstart command is used on all Linux systems in the basic sysplex. It starts a server
and client, or just a client, depending on the customization in your /usr/z1090/bin/CCT_data
file. This command is not run from root.

stpserverstart

This command also adds the STP function to the cron lists of the Linux system. This causes
the STP function to be restarted (if it fails) and to be automatically started when the Linux
system is rebooted. This command applies to all base systems (Linux systems) involved in
the STP configuration. In an STP sense, some can be considered clients and others servers
but this command is used with all Linux base systems involved.

The STP function is explained in more detail in Chapter 20, “Server Time Protocol (STP)” on
page 321. You must configure the /usr/z1090/bin/CCT_data file before starting an STP
server or client.

4.1.64 The stpserverstop command

The stpserverstop command causes a running STP function to be stopped. The cron entries
that automatically start the STP function are also removed. This command is not used as
root.

stpserverstop

4.1.65 The stpserverquery command

The stpserverquery command displays the status of any STP functions running on your
system.

stpserverquery

4.1.66 The sys_reset command

The sys_reset command performs a system reset (or system reset clear) function as defined
by z/Architecture. zPDT must be operational when using this command.

sys_reset [normal | clear]

Where:

normal is the default operation.

clear performs the additional architected clear function.

No return values are defined for this command. An example of usage is as follows:

$ sys_reset
88 IBM zPDT Reference and Guide

4.1.67 The tape2file command

The tape2file command reads a file from an emulated tape volume (awstape format) and
writes a simple Linux file. The various awstape control bytes (in the input file) are removed
before writing the output file. The result is a simple string of bytes in the output file, with no
indication of the separation of blocks that existed on the input tape. zPDT need not be
operational to use this command.

tape2file [-f file-num] input-file output-file

Where:

-f file-num specifies the logical file number in the input file. The default is file 0 (the first
file). A logical tape mark separates files.

input-file is the name of a Linux file that is in awstape format.

output-file is the name of a Linux file for output.

The output file is a binary file. It is possible that the data includes NL separators that would
indicate a Linux text file, but this is not required. z System tape labels (in the input file) are not
recognized and are treated simply as data files.

No return values are defined. An example of the command is as follows:

$ tape2file -f 2 /z/111111.awstape /tmp/mine/testfile

4.1.68 The tape2scsi command

The tape2scsi command copies a logical tape volume (in awstape format) to a SCSI tape
drive. The output tape is blocked as indicated by the control bytes within the awstape format.
zPDT does not need to be running to use this command.

tape2scsi [-i] [-e nn] [-s] input-file out-dev
 [--info] [--eof nn] [--scan]
 [-n]
 [--noinfo]

Where:

-i or --info displays information about each tape file as it is processed. This is the default
operation.

-n or --noinfo suppresses tape file information.

-e nn or --eof nn specifies the number of consecutive tape marks that indicate the logical
end of the input tape. The default is two.

-s or --scan causes the input file to be scanned, with information displayed (unless -n or
-noinfo is specified). No output tape is written.

input-file is a Linux file name with data in awstape format.

out-dev is the Linux name for the tape drive, such as /dev/st0.

This command converts a logical tape volume to a real tape volume. The optional
compression format used by zPDT awstape functions is recognized and processed, if
present. The Linux name of the SCSI tape drive for this command is usually in the /dev/stn
group and not in the /dev/sgn group. See Chapter 14, “Tape drives and tapes” on page 271
for more information about tape drive naming.

Return values are as follows:
Chapter 4. zPDT commands 89

0 Function completed without errors.
1 Unable to allocate I/O buffers.
2 Input file not specified, or unable to open input file.
3 Output device not specified, or unable to open output file, or output

device is write protected.
4 Operation terminated due to an I/O error.

An example of command usage is as follows:

$ tape2scsi -n tape01.awstape /dev/st0

4.1.69 The tape2tape command

The tape2tape command copies a logical tape volume (in awstape format) to another logical
tape volume (also in awstape format). Several optional operations may take place during the
copy, including compressing or uncompressing the data. The primary purpose of the
command is to compress or uncompress awstape files, or to summarize a file. zPDT does not
need to be running to use this command.

tape2tape [-c][-d][-e nn][-i]
 [--compress][--dynainfo][--eof nn][--info]
 [-n]
 [--noinfo]

 [-s] in-file out-file
 [--scan]

Where:

-c or --compress causes the output tape to be compressed.

-d or --dynainfo displays tape content when each record is read. Otherwise, information
is displayed only when a tape mark is encountered.

-e nn or --eof nn specifies the number of consecutive tape marks that indicate the logical
end of the input file. The default is two tape marks.

-i or --info provides a summary of the tape volume. This is the default.

-n or --noinfo indicates no summary is to be displayed.

-s or --scan scans the tape, but no output is produced.

in-file is the name of a Linux file in awstape format.

out-file is the name of a Linux file that will be in awstape format.

The input file may be in the zPDT compressed format; this is handled automatically. The
output file is compressed only if that option is selected. Both input and output files are in
awstape format. This command cannot convert other Linux files to awstape format.

No return values are defined for this command. An example of the command is as follows:

$ tape2tape -e 1 /tmp/111111 /z/222222.awstape

4.1.70 The tapeCheck command

The tapeCheck command verifies the internal format of a logical tape volume in awstape
format. That is, it verifies that the awstape control bytes within the file are logically correct.
zPDT does not need to be running to use this command.

tapeCheck file-name
90 IBM zPDT Reference and Guide

Where:

file-name is a Linux file in awstape format.

This command is used to inspect awstape files that may have been corrupted. It could be
used to check awstape files generated on another platform, to ensure they are compatible
with zPDT. Note that some older platforms do not create correct awstape bytes at the end of
a logical tape volume.

The return value is equal to the number of errors found in the awstape format. An example of
the command is as follows:

$ tapeCheck /tmp/222222.awstape

4.1.71 The tapePrint command

The tapePrint command writes the content of an emulated tape volume (awstape format) to
Linux stdout. zPDT does not need to be running to use this command.

tapePrint [-a][-e] in-file
 [--ascii][--ebcdic]

Where:

-a or --ascii specifies that the emulated tape volume has ASCII characters.

-e or --ebcdic specifies that the emulated tape volume has EBCDIC characters. This is
the default format.

in-file specifies a Linux file that is in awstape format.

Output is displayed block by block, in both hexadecimal and character format.

No return values are defined for this command. An example of the command is as follows:

$ tapePrint /z/222222.awstape

4.1.72 The token command

The token command displays the characteristics of the zPDT token currently in use. This
command should be used when zPDT is running.

token

There are no operands. Only the number of token licenses currently in use are displayed.
That is, if the token allows three CPs, but only one CP is currently in use, then information for
only one CP is displayed. An example of command use is as follows:

$ token
CPU 0, zPDTA ... Serial 6186(0x182A) Lic=88570(0x159FA) EXP=4/15/2015 1090

The serial number is the effective z System serial number and may differ from the token serial
number. The license serial number reflects the token serial number used to provide the zPDT
license. The final output indicator is 1090 or 1091 where 1090 indicates the original zPDT
version and 1091 indicates the appropriate version.

The token output message can have “SHK” or “LDK” at the end. SHK indicates a Gen1 token
or license manager and LDK indicates a Gen2 token or license manager.
Chapter 4. zPDT commands 91

4.1.73 The txt2card command

The txt2card command reads a Linux text file and creates a card image file (in EBCDIC).

txt2card in-file out-file

Where:

in-file is the name of a Linux text file (in ASCII). Each record must be 80 bytes or
shorter.

out-file is the name of a Linux binary file that is written by this command.

Input records are extended (with blanks) to 80 bytes and then converted to EBCDIC. The
ASCII/EBCDIC conversion table is fixed and cannot be customized.

There are no defined return values for this command. A command example is as follows:

$ txt2card /tmp/work2/config.txt /z/cards/deck1

4.1.74 The uimcheck command

The uimcheck command displays the state of the Unique Identity Manager (UIM) serial
number (which is the z System serial number). zPDT need not be running when this
command is issued; any user may issue the command.

uimcheck

There are no operands.

4.1.75 The uimreset command

The uimreset command is used to reset (remove) the UIM serial number from either the local
UIM database or both the local and remote UIM databases. This command must be run as
root, and zPDT is normally not running when this command is used.

uimreset [-l] [-r]

-l indicates that the UIM serial number in the local UIM database should be
 erased.
-r indicates that the UIM serial number in both the local UIM database and
 the remote UIM server should be erased.

The Unique Identity Manager (UIM) function and its use are explained in detail in “zPDT
licenses” on page 149.

4.1.76 The uimserverstart command

The uimserverstart command is used to start a remote UIM server. This command should
always be issued by the same Linux userid because it saves a database in the home
directory of that Linux user. It must not be started by root.

uimserverstart

This command also adds the UIM server to the cron lists of the Linux system. This causes the
UIM server to be restarted (if it fails) and to be automatically started when the Linux system is
rebooted.
92 IBM zPDT Reference and Guide

A UIM server is normally used only as part of a remote zPDT license server environment. It is
not used when running a simple zPDT environment with a token connected to the local zPDT
system.

The Unique Identity Manager (UIM) function and its usage are explained in detail in
Chapter 8, “zPDT licenses” on page 149.

4.1.77 The uimserverstop command

The uimserverstop command causes a running UIM server to be stopped. The cron entries
that automatically start the UIM server are also removed. This command is not used as root.

uimserverstop

4.1.78 The Z1090_ADCD_install and Z1091_ADCD_install commands

The command appropriate for your token (1090 or 1091) must be used. The discussion here
is based on 1090 tokens. This command is used to install the IPL volumes for the AD-CD
z/OS 2.1 (or later) release (and might apply to future z/VM, and z/VSE AD-CD releases). This
command is used only for an IPL volume; other volumes are installed with the Linux gunzip
command. This command is normally not run by root. zPDT cannot be running when this
command is used; if it is running you will see messages about “No license available.”

You must have an appropriate AD-CD license in your token or license server for this
command to work.

Z1090_ADCD_install infile outfile

Where:

infile is the distributed AD-CD volume that is the IPL volume. (For recent AD-CD z/OS
systems, two volumes exist: the “normal” IPL volume and the recovery volume that is
usually named SARES1.) These files (in the new format used with this command) have
.zPDT as the file name suffix.

outfile is the installed volume, ready to use.

This command requires additional disk space in the directory containing the outfile. This
additional space is the same size as the infile and is used for a temporary work file that is
automatically deleted before the command completes.

Command examples are as follows:

Z1090_ADCD_install /tmp/C1RES1.zPDT /z/C1RES1
Z1090_ADCD_install /tmp/SARES1.zPDT /z/SARES1

4.1.79 The Z1090_token_update and Z1091_token_update commands

The command appropriate for your Gen1 token (1090 or 1091) must be used. The examples
here are based on 1090 tokens. This command is new with the zPDT GA5 release and
replaces the SecureUpdateUtility command for that release.16 You must be root and have

Important: This command may not be relevant if your zPDT supplier provides token keys
through a different method. Contact your zPDT supplier for details.

16 You should continue to use the SecureUpdateCommand for zPDT releases prior to GA5.
Chapter 4. zPDT commands 93

/usr/z1090/bin as the current directory to use this command.17 zPDT must not be operating
when this command is used to update a token. The -r function may be used while zPDT is
active.

Z1090_token_update [-r filename[.req]] (or Z1091_token_update)
 [-u filename.[zip | upw]]
 [-status]

Where:

-r followed by an arbitrary file name creates a request file used to obtain token license
updates.18 The .req suffix is optional and will be automatically added if not present. When
the request file is sent to the licensing facility, you should receive in return a .zip file, a
.upw file, or both. See “Gen1 token activation and renewal” on page 169 for details about
these files.

-u causes either the .zip or the .upw file to be installed. You could use the .upw file if you
do not plan to install the AD-CD z/OS 2.1 (or later) release. Use the .zip file if you plan to
install this z/OS release.

-status verifies that the token license files associated with AD-CD usage are present.

This command obtains and installs updates for the zPDT license and for the licenses needed
to install the AD-CD z/OS 2.1 (or later) system. (Future z/VM and z/VSE releases may also
have similar requirements.) There is no harm in installing the token licenses needed for the
AD-CD z/OS 2.1 (or later) release even if you have no immediate plans to use it. This
command uses a small amount of temporary disk space in /tmp. When first installing the
additional licenses (in the .zip file) this command can take longer than you might expect to
complete. Be patient.

Only one token should be present when this command is used. These commands are not
used for Gen2 tokens.

An example command usage is as follows:

$ cd /usr/z1090/bin (you must be in this directory)
$ su (you must change to root)
Z1090_token_update -r myreq (creates myreq.req file in Linux)
 (Receive an .upw or .zip file, or both)
Z1090_token_update -u myreq.zip (apply the update file)
exit (exit from root)

4.1.80 The Z1090_removall command

The Z1090_removall command does exactly what the name implies. It removes zPDT
(including the two token drivers) from a Linux system.

z1090_removeall

This command requires root authority and is appropriate only in unusual circumstances.
Another option available to remove zPDT is part of the zPDT installer function and is
described in “Installer options” on page 103.

17 The use of root may be avoided by using the SecureUpdate_authority and zpdtSecureUpdate commands.
18 Some zPDT users (typically with 1091 tokens) might not require a .req file in order to receive token updates.

Consult your zPDT supplier for details.
94 IBM zPDT Reference and Guide

4.1.81 The z1090instcheck command

The z1090instcheck command checks a number of installation criteria. It may be used
whether or not zPDT is running.

z1090instcheck

There are no operands. This command is sensitive to the Linux distribution being used and to
the level of that distribution. The output may vary with a new release of zPDT. The
z1090instcheck command is used with both 1090 and 1091 systems.

Return values are as follows:

0 Command completed.
8 An unrecognized Linux system is being used.

An example of usage is as follows:

$ z1090instcheck
1. SUSE at version 10.3 which is OK
2. SUSE kernel.shmmax is 2415919104 which is OK
3. SUSE kernel.msgmni is 512 which is OK
4. SUSE kernel.core_uses_pid is 1 which is OK
5. SUSE kernel.core_pattern is Core-%e-%p-%t which is OK
6. SUSE unlimited ic is set to unlimited which is OK
and so forth

Remember that the specific report changes with new zPDT releases and with the underlying
Linux distribution. Some of the checks may produce warnings that you must evaluate for
yourself. The help function (z1090instcheck -h) returns additional configuration suggestions.

4.1.82 The z1090term command

The z1090term command provides an ASCII terminal function that may be used to connect to
the HMC-like ASCII terminal defined by the intASCIIport statement in a zPDT devmap. The
syntax is as follows, where the IPaddress points to the base Linux system running zPDT and
the port number is defined in the intASCIIport statement of the zPDT device map:

z1090term IPaddress:port

Examples are as follows:

$ z1090term my.remote.zpdt.com:7100
$ z1090term 192.168.1.101:7100
$ z1090term localhost:7100

There is no standard port number for this function; the 7100 number in the examples is
arbitrary. This command is included in the /usr/z1090/bin directory; the executable file may be
copied to other Linux systems where this terminal interface could be used to connect to
zPDT.

4.1.83 The z1090ver and z1091ver command

The z1090ver or z1091ver command displays the current zPDT version, with the date it was
build. This information may be necessary when investigating a zPDT problem.

z1090ver (for ISV zPDT)
z1091ver (for zD&T zPDT)
Chapter 4. zPDT commands 95

There are no operands. The return value is zero. An example of the command is as follows:

$ z1090ver
z1090, version z1090_v1r0_E39, build date - 10/17/08 SUSE 32 bit

The exact output messages vary with the zPDT release.

4.1.84 The zpdtSecureUpdate command

The zpdtSecureUpdate command automatically switches to the /usr/z1090/bin directory,
executes the SecureUpdateUtility, Z1090_token_update, or Z1091_token_update command,
and then switches back to your initial directory. You must be root to use this command or you
must be enabled to execute this command via the SecureUpdate_authority command.

zpdtSecureUpdate [-r | -u] Linux-file-name (if you are root)
$ sudo zPDTSecureUpdate [-r | -u] Linux-file-name (if enabled for sudo)

The operands (-r, -u, and file-name) are the same operands that are used with the
SecureUpdateUtility, the Z1090_token_update, or the Z1091_token_update commands.

This command is used in a manner that does not require root authority by the user. See
13.10, “Security exposures” on page 268 for details.
96 IBM zPDT Reference and Guide

Chapter 5. zPDT installation

zPDT operates as a normal Linux application. We suggest that the general procedures
described here be followed for initial zPDT installation and use. After you gain experience
with zPDT, you might explore other installation and usage arrangements. Many of our
choices are arbitrary and simply reflect our preference for a simple Linux.

For some of our examples, we elected to install Linux with fixed IP addresses, with firewalls
and other security elements disabled. This was to ease communication in a private LAN
environment (connected to a small, personal router). Your needs might be different. zPDT
functions are not related to these controls, except that you might need to open firewall access
for TCP/IP connections to the zPDT functions. Several different LAN and TCP/IP
configurations are explored in “LANs” on page 119.

Starting requirements
This document does not provide detailed ordering information for zPDT. The ordering
process differs for various categories of users and for different countries. At a high level, you
need the following:

� A PC Linux system that is supported by zPDT. This base Linux is not supplied by IBM. It
must be ordered or downloaded from a web site.

� A zPDT token (which might need to be activated through an IBM business partner, zPDT
supplier, or through IBM Resource Link®). An alternative to physical tokens exists and is
discussed in Chapter 8, “zPDT licenses” on page 149.

� The zPDT software, which must be installed before the token can be activated (if it is not
supplied already activated). The base zPDT software does not include any z System
Operating Systems.

� Whatever z System software you plan to use, in a format usable with zPDT. This might
require a different ordering process than ordering zPDT itself. Typically, this is an AD-CD
package, as outlined in Chapter 6, “AD-CD installation” on page 109. Much of the material
in this document assumes that you will install the z/OS AD-CD system. If you are installing
different z System software, you must obtain specific instructions for zPDT from the
supplier of that software.

5

© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 97

5.1 Installation overview

A summary of the usual installation involves these steps:

1. If you are new to Linux or zPDT, install a simple system first, before attempting something
more complex. Do not use root for all installation and operation actions.

2. Think about your Linux disk partitioning, especially if you plan to install major Linux
applications in addition to the zPDT package.

3. Gather the required software packages:

– Linux for your base PC. zPDT checks for Red Hat, SUSE, or Ubuntu indicators and will
not install with other Linux distributions.1

You might want to also acquire the x3270 terminal emulator package if it is not
included with your Linux distribution.

– The zPDT software (which might be obtained on a CD or DVD, or by a download).

Two zPDT packages are available, one for ISVs with 1090 tokens (or the equivalent
Gen2 tokens) and one for zD&T with 1091 tokens (or the equivalent Gen2 tokens).2
The proper package must be used with the proper token.

For each package, two Gen1 token drivers, the zPDT modules, and the license
agreement are all in a single (non-rpm and non-deb) file. The file contains Red Hat,
SUSE, and Ubuntu versions of the zPDT code. The proper version is automatically
installed on your system.

– Your z System software in a format usable with zPDT.

4. Follow the installation steps described later in this chapter:

a. Install Linux.

b. Install x3270 (or another 3270 emulator) if it is not included in your base Linux
distribution. Optionally, customize the x3270 keyboard.

c. Create userid ibmsys1.3

d. Install the zPDT package.

e. Customize two Linux files (sysctl.conf and .bashrc).

5. Activate your zPDT token if necessary, as described in 8.11, “Gen1 token activation and
renewal” on page 169. You cannot do this until the zPDT package is installed. (This step
might have been done by a business partner or zPDT service provider.)

6. Generally following Chapter 6, “AD-CD installation” on page 109, install z/OS or other z
System software:

a. Select the AD-CD distribution (or another z System operating system)
b. Install the emulated 3390 volumes.
c. Customize or create a devmap.
d. Start zPDT and IPL your operating system.

7. After you have run a basic system, you might consider LAN configurations.

As is often true with new hardware and software combinations, a given Linux distribution
might not fully support the newest PC hardware. This is most often seen with new LAN

1 The zPDT installation program checks the base Linux system for certain indicators. It is possible that other
distributions might have one of these indicators, allowing zPDT installation to proceed.

2 There are alternatives to these tokens, but we use these token names for descriptive purposes.
3 This is not required. However, all our examples assume that the zPDT is operated through Linux userid ibmsys1.

Whatever userid is selected must be no longer than eight characters. Do not attempt to operate zPDT while
working as root.
98 IBM zPDT Reference and Guide

adapter chips and with new graphics chips and/or display panels. Support for these might
require additional Linux drivers or upgrades. If you have a new PC model, or an unusual
configuration, you should verify that your Linux version is completely operational on your
hardware before starting zPDT installation.

5.1.1 Disk planning

During simple Linux installations we usually create three partitions on the hard disk:

� A root partition for Linux (including the various zPDT files)

For a typical laptop, we usually make this about 10 - 20 GB although this is larger than
routinely needed.4 This partition contains all the normal Linux root directories, such as
/usr, /lib, /home, and /etc. If you have additional major applications installed (other than
basic Linux functions), this partition might need to be much larger. Free space should be
sufficient to accept one or more large core image files.5

� A swap partition for Linux. We suggest 4 GB (or larger)

A common recommendation is (real memory size) + 2 GB, although this might result in
wasted disk space.

� A large partition for emulated z System volumes

We usually mount this partition as /z. We normally use all the remaining space on the disk
drive for this partition.

If you create a separate /home file system, it should be large enough for several sizeable core
image files. At least several gigabytes are suggested.

This suggested disk layout is not required. You could make many partitions for the various
standard Linux directories. You could place emulated volumes in various directories under
/home. You could place emulated volumes in /tmp, and so forth. We suggest our disk layout
as a starting point solely because it is simple and it isolates emulated z System volumes from
the normal Linux files. This isolation is useful because you can reinstall Linux without
disturbing your emulated volumes.

5.2 Linux installation

Install your Linux distribution. You might select only those packages that are needed for basic
Linux operation, or you might install everything in your distribution. Consider the following
requirements and suggestions:

� The zPDT license function, provided by a hardware token in basic installations, requires a
32-bit Linux library. At the time of writing the required library was:

– For Red Hat: libstdc++.i686
– For SUSE: libstdc++6-32bit
– For Ubuntu: lib32stdc++6

• We used the command # apt-get install lib32stdc++6 (installed via the web)

The required library appears to be installed automatically with recent SUSE releases. The
other distributions might require you to obtain the library from the web. The library names

4 A machine with larger memory will typically have a larger Linux file system. Among other things, it should be able to
hold one or more core image files that might be created in unusual situations. A core image file created under
zPDT might be somewhat larger than the z System size defined in the devmap.

5 Core images (which are a debugging tool) should not be encountered often, but they might be needed for zPDT
service in the rare event of serious problems with zPDT.
Chapter 5. zPDT installation 99

noted here are the “search names” that you might use to locate the library. Each library
has a more complete name such as libstdc++6-32bit-7.1.1+r248970-1.4.x86_64 for
SUSE.

If you are using Gen2 licenses or tokens the installation process can automatically locate
(via the web) and install the required 32-bit library. See 8.5.2, “Gen2 client configuration”
on page 155 for details.

� We found it advisable to select several additional packages during Linux installation:

– We suggest you install the smpppd, if it is available and not installed by default. This is
required for traditional network support and might be needed to install x3270.

– Newer x3270 versions require expect to be installed.

– Install vsftp or some other Linux FTP package. It is not required for zPDT, but you
might want to transfer files between Linux and z/OS using FTP.

– Install x3270 if it is included in your Linux distribution. (It is typically not included.)

� Include Perl; it is not required for basic zPDT operation, but is used by some RAS
functions. Perl is typically included automatically in the Linux installation process.

� Select Universal Time (UTC) for your base PC, if possible. (This might not be possible if
you also run Windows on the same PC.

� Although not a Linux option, we suggest that machine hyperthreading (if available) be
disabled at the BIOS level. z/OS slowdowns might occur at random times if you have
hyperthreading active when running zPDT with multiple CPs.6

� zPDT is not sensitive to the desktop manager. Some developers use GNOME and others
use Xfce or KDE.

� We found that performing an online update for the Linux distribution is advisable.

� You must manage whatever firewall and other security functions that you install with your
Linux. We suggest initially disabling any firewall when first working with zPDT. After you
are familiar with zPDT operation, you can reestablish the firewall functions. If you have
external TCP/IP connections (for local 3270 connections, for OSA connections, for license
servers, for STP, or for CTC connections) you must provide appropriate port holes in any
firewall you use.

5.2.1 Other Linux notes

Always use the same Linux userid for zPDT operation. This Linux userid must be no longer
than eight characters.7 Multiple zPDT instances require a different Linux userid for each
instance.

We suggest that you do not add other directories before /usr/z1090/bin in your Linux shell
PATH and LD_LIBRARY_PATH variables. There are many commands provided with zPDT,
and these correspond to Linux file names that are accessed through the PATH variables. For
example, the command d is used to display z System memory and registers. If you place
another directory containing a file named d earlier in the PATH, the zPDT d function will not
be available in the normal manner. Various internal zPDT functions assume they can access
zPDT modules through PATH and LD_LIBRARY_PATH, so you must ensure that this is
possible.

6 This is discussed in more detail in 13.2, “PC Hyper-Threading” on page 251.
7 The Linux userid is used as the LPAR name under zPDT, and LPAR names are limited to eight characters or less.

(Only a subset of LPAR-like functions are provided by zPDT.)
100 IBM zPDT Reference and Guide

5.3 TN3270e clients

IBM has used two TN3270e clients with the recent zPDT offerings:

� x3270 (recent versions)
� Recent IBM Personal Communications (PCOMM) releases (running on Windows

systems)

We most commonly use x3270. An x3270 package is usually a single rpm or deb, such as
this:

x3270-3.4-4.15.x86_64.rpm

Other x3270 levels may be used, or another 3270 emulator may be used. Unfortunately,
there appears to be many levels of x3270 packages on the web, with varying characteristics.

For Ubuntu, we used the following commands to install it (while connected to the Internet):

$ sudo apt-get install x3270
$ sudo apt-get install xfonts-x3270-misc
$ xset fp rehash (might not be needed)

5.3.1 x3270 keyboard maps

The default x3270 keyboard assignments are not in the traditional 3270 style. In particular,
the large Enter key on the PC keyboard functions as the 3270 Enter key.8 With traditional
3270 keyboards this same key provides a new line function and the 3270 Enter key is located
where the right-side Ctrl key is located on most PC keyboards.

One way to change the key mapping is to create a file (in your home directory) named
.x3270pro (note the period as the first character of the file name):

! Use Bill’s overrides
x3270.keymap: bill
! Define the overrides
x3270.keymap.bill: #override \
 <Key>Control_R: Enter()\n\
 <Key>Control_L: Reset()\n\
 <Key>Return: Newline()\n\
 <Key>Pause: Clear()\n\
 <Key>End: Clear()\n\
 <Key>BackSpace: BackSpace() Delete()

The x3270 keymap files are sensitive to extra spaces and tab characters. Do not have
anything after the \n\ in the text lines. In this file, we indented the <Key> field starting in
column 4, although this was arbitrary. Both the Pause and the End keys are mapped to the
3270 Clear function; we did this because some keyboards no longer have a Pause key.

It is useful to remember several default mappings for x3270:

Attention: If you are an IBM internal user installing zPDT on the OpenClient based on
RHEL 6, see “IBM OpenClient special case” on page 107.

8 We notice that users with strong z/VM backgrounds prefer this default key arrangement, while users with z/OS
backgrounds (especially ISPF usage) prefer to reassign the keys.
Chapter 5. zPDT installation 101

PA1 alt-1
PA2 alt-2
F13 shift-1 (and so forth for PF13-24)

Another way to remap the keyboard is to edit /usr/share/X11/app-defaults/X3270 and place
changes in this file. Recent versions of x3270 have changed the distributed version of this file
and we recommend using the .x3270pro method.

x3270 fonts
If x3270 is installed from a separate rpm, it might not have its “normal “fonts.9 In the x3270
fonts menu there might be an option for ISO fonts. We selected the following one:

-eti-fixed-bold-r-normal--18-180-72-72-c-90-iso8859-1

The 18 that is embedded in the name is the point size. A similar choice, with 24 in this
position, selected a larger font.

5.4 Installing zPDT software

Decide on the Linux userid you want to use for zPDT. We use ibmsys1 in all our examples,
but you can select any userid that is eight characters or fewer.

In the examples throughout this document, the dollar sign prompts ($) indicate a non-root
userid; the number sign prompts (#) indicate we are working as root. We suggest that you
always log in as ibmsys110 and then use an su command to switch to root when needed. The
following directions assume that a single zPDT instance is used. (Multiple zPDT instances
require multiple userids, such as ibmsys2 and ibmsys3.)

If you have not already done so, create user ibmsys1. By default, userid ibmsys1 has
/home/ibmsys1 as its home directory and some zPDT control files appear in subdirectories
here. We created file system /z as a separate partition during our Linux installation.11 We
want userid ibmsys1 to own this file system:

(log on as ibmuser1)
su (switch to root)
chown ibmsys1 /z (user ibmsys1 to own emulated volume directory)

A single executable file is used to install the zPDT software.12 The file name changes with
maintenance releases, but has the following general format:

z1090-1-8.51.11.x86_64 (verify your exact file name)
z1091-1-8.51.11.x86_64 (for zD&T)

The single file contains the following items:

� An sntl-sud rpm at the correct level (A driver for the Gen1 tokens)
� A zpdt-shk-server rpm at the correct level (Another token program)
� The primary z1090 or z1091 rpm for SUSE Linux
� The primary z1090 or z1091 rpm for Red Hat Linux
� The primary z1090 or z1091 deb for Ubuntu

9 There appears to be many levels or builds of x3270 on the web and differences include the way fonts are installed
or used. The author has sometimes experiment with different version to find one that includes the desired fonts.

10 There is nothing special about userid ibmsys1. We consistently use it to illustrate zPDT operation. Any userid
with 8 or fewer characters can be substituted for ibmsys1, but that userid should be consistently used for all zPDT
installation and operation actions.

11 This might not be the case for the IBM Open Client, but we ignore this exception here.
12 This file differs for ISV (1090) and zD&T (1091) systems.
102 IBM zPDT Reference and Guide

� An installer program that displays a license and then installs the rpms or debs. The
correct rpm or deb (Red Hat or SUSE or Ubuntu) is automatically selected for your base
Linux system.

Proceed with zPDT installation as follows. The first goal is to move the installation file to a
convenient directory, such as /tmp. If you obtained the zPDT installation file through FTP or
another download method, you might already have placed it in /tmp.

(log in as ibmsys1)
$ su (change to root)
cd /tmp (if the file is in /tmp)
chmod u+x z1090-1-8.51.11.x86_64 (make file executable, if not already)
./z1090-1-8.51.11.x86_64 (verify the exact file name first)13

Scroll through the license that is displayed and reply to the question at the end. The various
components are then installed automatically. The zPDT installer program performs the
following tasks, removing existing versions of these programs as needed:

� Two prerequisite token modules are installed.
� The z1090 or z1091 rpm or deb is installed, mostly in /usr/z1090/bin.

– /usr/z1090 is used for both ISV and zD&T versions; /usr/z1091 is not used.
� A set of man files is loaded into /usr/z1090/man.
� A /usr/z1090/uim directory is also created.
� You must install the Gen2 license client later if you use Gen2 license functions.

If you previously installed zPDT with the Gen2 license manager client (as described in 8.5,
“Client Installation and configuration for remote servers” on page 154), a new release of this
license manager client is automatically installed as part of your current zPDT installation
process. This includes an automatic search for the required 32-bit library package, if needed.

Installer options
If a zPDT patch is installed, it must be removed before a new zPDT release can be installed.
(zPDT patches are fairly rare, but are produced when needed for specific problems.) A zPDT
patch is an rpm or deb. Patches can be located with rpm -qa | grep z109 commands and
removed with rpm -e commands, or the Ubuntu equivalents.

The installer program has three optional functions. Using the file name in the preceding
example, the functions are listed here:

./z1090-1-8.51.11.x86_64 --refresh (reinstall current zPDT level)
./z1090-1-8.51.11.x86_64 --refreshall (reinstall zPDT and prerequsites)
./z1090-1-8.51.11.x86_64 --removeall (remove zPDT and prerequisites)

The prerequisites mentioned here are two modules that are needed to access the USB token.

5.4.1 Alter Linux files

You must alter two Linux files before you can use zPDT. The first alteration is to
/etc/sysctl.conf and involves changing a number of Linux kernel parameters. The second
alteration is to the .bashrc file in your home directory; this adds the zPDT directories to your
userid’s PATH and LD_LIBARY_PATH variables. These are usually one-time changes. It is
not necessary to make the changes again when upgrading to a new zPDT release.

You can manually edit the relevant Linux files or use zPDT commands to make the changes.
The zPDT commands are as follows:

13 The “./” characters before the file name tell Linux to execute this file from the current directory.
Chapter 5. zPDT installation 103

/usr/z1090/bin/aws_sysctl (You must be root to use this command)
$ /usr/z1090/bin/aws_bashrc (You must not be root to use this command)

The complete path name might be required for these commands (as shown here) because
your Linux PATH might not yet include the zPDT files. If you use these two commands, you
may skip the following material about manually editing these files.

Manually edit the files
If you want to manually edit /etc/sysctl.conf,14 we indicate the use of gedit but you may
use any suitable editor (such as vi or leafpad) to add the indicated lines.15

Some Linux distributions already have acceptable values for shmmax, msgmnb, msgmax, and
core_uses_pid, but other distributions may need to have all these values set.

gedit /etc/sysctl.conf (the following lines should begin in column 1)
 kernel.core_pattern=core-%e-%p-%t

kernel.core_uses_pid=1
kernel.msgmax=65536
kernel.msgmnb=65536
kernel.msgmni=512 (change for large number devices)
kernel.shmmax=18000000000 (17+ GB or more)

 kernel.shmall=12000000 (12M pages or more)
kernel.sem=250 32000 250 1024 (include this only if needed)
net.core.rmem_max=1048576
net.core.rmem_default=1048576

/sbin/sysctl -p /etc/sysctl.conf

Notes for sysctl values
The shmmax value shown establishes the maximum shared memory segment size that a user
can request. All z System memory, plus several other zPDT work areas, is in Linux shared
memory. The shmmax value should be at least 10 - 20% larger than the System z memory
defined for the largest zPDT instance you use. The example shown (18000000000 bytes) is
suitable for a zPDT instance with up to 14 GB memory defined. There is no need to attempt
an exact fit for the shmmax number; the example here may be used unless your defined z
System memory is larger than, for example, 14 GB.

Another parameter, kernel.shmall, sets the total shared memory size of all users. The value
of shmall is specified in units of page size, which is usually 4096. The default value of shmall
is usually quite large and acceptable.16 However, if you have multiple zPDT instances, all with
large z System memory, you might exceed the default shmall value. If this happens you need
to include a parameter such as this:

kernel.shmall=12000000 (or larger, if appropriate)

This results in the total amount of shared memory, for all users, to be 12,000,000*4096 or
about 48 GB. This value should be greater than the number of zPDT instances times the z

14 Some versions of the IBM Open Client reset these values when maintenance is applied. If this happens, you
should again enter the values shown here and run /sbin/sysctl.

15 We suggest that you do not attempt to use vi unless you have a basic familiarity with it.

Important: The shmmax and shmall values installed by the /usr/z1090/bin/aws_sysctl
script are suitable for many laptop environments where the emulated z System memory
size is not more than 8 to 12 GB. If your emulated z System size is larger than about 14 GB
you need larger shmmax and shmall values. Read the following notes carefully.

16 The default value on several distributions is 1,152,921,504,606,846,720, which is huge. However, on at least one
IBM internally used Linux the default is much lower and may need to be adjusted.
104 IBM zPDT Reference and Guide

System memory size for each instance plus about 10-20%. A number much larger than
needed appears to do no harm.

The kernel.msgmni number, specified as 512 in this example, might need to be larger if you
have many emulated I/O devices; perhaps more than 100 devices. The msgmax and
msgmnb changes are not needed for some Linux releases because these are the default
settings. However, including these parameters in sysctl.conf does no harm.

Included in the example is the kernel.sem parameter that controls the maximum semaphore
configuration for Linux. If you have a large number of devmap devices in multiple zPDT
instances you might need to change this parameter; an example of a change is shown above.
However, the default values are suitable for most users.

See 13.19, “Many zPDT devices” on page 263 for more discussion about usage a large
numbers of emulated I/O devices.

The net.core parameters might be needed if Ethernet large frames are used. These seem to
do no harm, so you can always include them. In this context, any frame with more than 1500
bytes is considered large.

Notes for .bashrc
The .bashrc file is changed, as follows:

exit (leave root if you are in root)
$ cd /home/ibmsys1 (my login directory)
$ gedit .bashrc (use your favorite editor)

(Add the following lines beginning in column 1):
export PATH=/usr/z1090/bin:$PATH
export LD_LIBRARY_PATH=/usr/z1090/bin:$LD_LIBRARY_PATH
export MANPATH=/usr/z1090/man:$MANPATH
ulimit -c unlimited
ulimit -d unlimited
ulimit -m unlimited (if more than 128 emulated I/O devices)
ulimit -v unlimited (if more than 128 emulated I/O devices)

Double-check the entries in these two Linux files. Errors here might be difficult to detect later.
The ulimit -m and -v statements are not required for most users and should probably be
excluded unless you have more than 128 emulated I/O devices.)

Other files
Check your zPDT distribution materials to see if any sample devmap files might be helpful.17
Copy these to the /home/ibmsys1 location, as in this example:

$ cd /tmp (or wherever your zPDT material is)
$ cp aprof22 /home/ibmsys1/aprof222 (sample devmap)
$ chmod 664 /home/ibmsys1/aprof22 (make it readable)

Any sample devmaps should be edited to match your configuration and file names. If you do
not find a sample devmap, you need to create one before you can start zPDT.

Remember: The shmmax number is for the number of bytes, and the shmall number is for
the number of pages.

17 These might be provided by your zPDT service provider.
Chapter 5. zPDT installation 105

Reboot Linux
Reboot Linux to pick up all the changes you made. Then use the z1090instcheck command
to partly verify your environment for running zPDT. Your new PATH is needed to find the
command:

(log in as ibmsys1)
$ z1090instcheck (the same command is also used for 1091 systems)

If this command is not found, you do not have the PATH variables set or you did not install the
zPDT code correctly. Note that this command does not check any devmaps that you may
have defined or copied.

5.5 Token activation and zPDT serial numbers

If your token is not already activated, see 8.11, “Gen1 token activation and renewal” on
page 169 for guidance.

In the simple case, in which you have a single zPDT token that is used only on your PC, the z
System serial number (when you start zPDT operation) is derived from the token serial
number of the token.

In more complex environments, the z System serial number used may be set in other ways.
This is described in Chapter 8, “zPDT licenses” on page 149.

5.6 Starting your new zPDT system

For initial testing purposes you might create the following file (which we arbitrarily name
devmap0) in your home directory:

[system]
memory 8GB
3270port 3270
processors 1

[manager]
name aws3274 1000
device 0700 3279 3274

You can then start zPDT with the following command:

$ awsstart devmap0

You should see startup messages from zPDT. If you have not yet installed a z System
operating system, there is not much else you can do at this point. You can stop zPDT with the
following command:

$ awsstop

If these steps complete without errors, your zPDT system is installed. If your token (or a
connection to a remote license server) does not contain a valid license, you will not see a
message saying zPDTA license obtained, but the startup and shutdown should work
correctly.
106 IBM zPDT Reference and Guide

5.7 Installing a different zPDT release

New zPDT releases are typically available through your Business Partner or (for IBM
employees) through Resource Link. The installation procedure is the same regardless of the
source. Installation is exactly the same as described earlier.

A summary of the steps is as follows:

1. Obtain the new distribution file.

2. Working as root, execute the distributed file. It will delete the previous release and install
the new release. The process takes only a few seconds and does not disturb any of your
customization.

You might want to install an older zPDT release for some reason. This is done in the same
manner.

5.8 IBM OpenClient special case

If you are an IBM internal user installing zPDT on the IBM OpenClient based on RHEL6 you
must take additional actions when installing or upgrading zPDT. This requirement applies to
zPDT GA7 and to GA6 with the fix for SafeNet modules in recent Linux releases (zPDT
49.23.02). This special action is not needed if you are using zPDT GA8. Before installing or
updating zPDT you must rename /usr/lib/systemd to a temporary name:

mv /usr/lib/systemd /usr/lib/systemd.temp
---install the zPDT update or distribution---
mv /usr/lib/systemd.temp /usr/lib/systemd (revert to original name)

It appears that /usr/lib/systemd is used by the IBM Sametime function and you might need to
stop this before renaming the library. The problem is related to the installation commands
used by SafeNet. The problem does not occur with OpenClient releases based on RHEL7.
Chapter 5. zPDT installation 107

108 IBM zPDT Reference and Guide

Chapter 6. AD-CD installation

The z System Personal Development Tool program provides z System functionality and
associated utility programs. It does not include any z System software. z System software,
including operating systems, utilities, middleware, applications, and so forth, must be
obtained separately. In practice, the IBM offerings for ISVs (zPDT) or commercial customers
(zD&T) might include the z/OS AD-CD package although it is not part of the zPDT program.

For software licensing purposes, a zPDT system is a z System machine and all software
licensing requirements that apply to a larger z System installation also apply to a zPDT
installation. This statement applies to all z System software from IBM and, we assume,
applies to all z System software available from other vendors.

The discussions in this chapter assume that proper licenses have been obtained for the z
System software. Licensing arrangements (and associated costs) can be complex topics and
are not further addressed in this document.

Note that the AD-CD1 package (whether downloaded or obtained on DVDs) does not include
the basic zPDT software. zPDT must be obtained separately and installed before AD-CD
software can be used.

6

1 You might see both “AD-CD” and “ADCD” used at various times. For historical reasons AD-CD is more correct, but
both refer to the same thing.

Important: The discussions in the remainder of this document assumes the reader has a
general familiarity with z/OS systems programming and understands how to access
various control data sets. We highlight specific details that might be relevant to zPDT
usage and the current AD-CD releases. This is not intended as an introduction to z/OS
administration.

Furthermore, we assume basic familiarity with the AD-CD z/OS package. You can find
update information about the AD-CD packages at the following website:

http://dtsc.dfw.ibm.com
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 109

http://dtsc.dfw.ibm.com

6.1 General principles

All current IBM z System Operating Systems (assuming proper licenses exist) are supported
for zPDT usage, subject to architecture constraints described in “z System characteristics” on
page 6. This includes current versions of z/OS, z/VM, and z/VSE. Linux distributions intended
for z System use may be used, but all possible functions and configurations have not been
extensively tested. Older versions of operating systems and other software might work
correctly (if they are at least at the XA level), but there is no formal testing or support for older
software.

Software installation methods might be different for zPDT systems than for traditional z
System installations. This difference is due to the differences in I/O devices available on
zPDT systems and on larger z Systems machines.

6.2 z System Operating Systems

There are limitations for installing IBM operating systems. These limitations are related to the
use of the software media and packaging techniques involved and are not limitations on the
use of the operating systems after they are installed.

The most common limitation is for any software that is distributed on tape. To install this
software, your zPDT system must have a tape drive, and these are not commonly available
for PC machines. Another limitation is related to any z System software that is packaged in
such a way that installation requires specific z System HMC functions.

6.2.1 Media

In most cases (when a tape drive is not available) installation media is limited to CD, DVD,
and LAN connections. (We can consider FTP as media in this context.) Distributed files must
be in formats that can be processed for zPDT. There are two meaningful formats:

� A Linux image of an emulated 3390 drive2 that can be restored in the 3390 format used by
zPDT. The image might be compressed (using gzip, for example) and would need to be
uncompressed before use with zPDT. Likewise, the image might be in .tar files and
would need to be extracted (and possibly uncompressed) before being used with zPDT.

The 3390 drive image format must be produced by another zPDT system, because no
other product uses the same 3390 image format that is used by zPDT. Whatever
preliminary unpacking or uncompression is needed must be done by Linux utilities before
the 3390 image can be used by a z System operating system.

� A tape image in awstape format. Such images appear as “real” tape volumes to z System
Operating Systems operating on zPDT, and can be processed as such by using emulated
tape drives. The tape might contain product installation material (in SMP/E format, for
example), an ADRDSSU dump of a disk volume, or any other tape data usable by z
System programs.

Another media option is to FTP a product (or other data) directly to z/OS. Some z System
software is distributed in this format. zPDT must have a running z/OS and LAN connection to
use this method. (Most of our discussion is for z/OS, but z/VM, z/VSE, or Linux for z Systems
might be used in the same way. The point is that a working z System operating system must
be installed before additional software can be sent directly to it through FTP.)

2 3380 images could also be used, but we ignore these here.
110 IBM zPDT Reference and Guide

Differentiating the handling of these methods is important:

� CDs and DVDs must be processed by Linux programs (unless they contain awstape files).

� awstape files must be processed by z/OS (or another z System operating system),
although the transport of awstape files can be managed by Linux through CD/DVDs, USB
memory keys, or FTP.

� Direct FTPs to z/OS might be in other formats, for example in formats suitable for
processing by SMP/E or the TSO XMIT command. In any event, these are z System
formats and not Linux formats.

� An emulated 3390 volume (after decompression, if necessary) is a large Linux file that is
meaningful only to z System software.

6.3 Installing a z/OS AD-CD system

The following examples use volsers (volume serial numbers) corresponding to the z/OS 2.3
(December 2017) release of the AD-CD system. These volsers tend to change in a standard
pattern for new releases.

The IPL volume(s) in recent (since z/OS 2.1) z/OS AD-CD releases are encrypted. The two
“IPLable” volumes are usually xxRES1 and SARES1, where “xx” changes with each z/OS
AD-CD update. These must be installed using the Z1090_ADCD_install or the
Z1091_ADCD_install command. These commands decrypt the volumes and assist in
implementing a signature technique that identifies the customer installing the volume.3

6.3.1 Specific installation instructions

There are multiple DVDs or download files for a z/OS AD-CD release. Documentation with
each AD-CD release contains specific information about the volumes needed for that release.

Volumes other than IPL volumes are all in simple gzip format. AD-CD system installation
might be as follows, assuming our target directory for emulated 3390 volumes is /z:

(We assume you are working as userid ibmsys1)
$ cd /run/media/ibmsys1/DVD1 (if AD-CD is on DVDs))
$ Z1090_ADCD_install a3res1.zPDT /z/A3RES1 (decrypt IPL volume)
$ gunzip -c a3res2.gz > /z/A3RES2 (unzip other volumes)
$ gunzip -c a3uss1.gz > /z/A3USS1
$ gunzip -c a3sys1.gz > /z/A3SYS1

And so forth for all the volumes to be installed.
Use the Z1091_ADCD_install command instead of Z1090_ADCD_install if
appropriate. The suffix for the IPL volume may be zPDT or ZPDT.

Notice that the suffix of the file name for a distributed IPL volume is now .zPDT or .ZPDT
instead of .gz. The distributed file is encrypted and compressed; it is automatically expanded
as part of the Z1090_ADCD_install processing.

Important: The installation method for the z/OS 2.1 AD-CD (and later) systems differs
from the installation of all previous AD-CD systems.

3 z/OS AD-CD releases prior to z/OS 2.1 were not encrypted. z/OS AD-CD releases starting with z/OS 2.1 have
encrypted IPL volumes. To decrypt these you must have zPDT release GA5 or later and you must have a token
license file that contains the proper license to enable decryption. The proper license files are distributed in .zip
format. If you have earlier software (before z/OS 2.1 or before zPDT GA5) you should refer to earlier editions of this
document.
Chapter 6. AD-CD installation 111

The files containing emulated volumes (and the directory containing these files) must have
read and write permissions for the userid running zPDT. Assuming use of the ibmsys1 userid,
we suggest that all such files and their directories (/z, in our examples) be owned by
ibmsys1.

File name considerations
An emulated 3390 volume exists in a single Linux file. For example, a 3390-39volume exists
as a 8.5 GB Linux file. A 3390 volume has a volser that is written in the first track of the 3390
volume.4 The Linux file holding the (emulated) 3390 volume has a Linux file name, which is
specified in a devmap. There is no required relationship between the volser and the Linux file
name. For example, volser WORK02 might be in /tmp/mysys/ckd001.

In all our examples, we elected to use the volser of the 3390 volume as the Linux file name
that holds the volume. We use uppercase letters simply to make these emulated volume file
names more distinctive. There is no requirement to use the volser as the Linux file name, and
there is no requirement to use uppercase names.

We strongly suggest that you make the Linux file name reflect the volser, if at all possible. For
example, volser WORK02 might be in /z/mysys/WORK02 or /z/mysys/WORK02.ckd. A Linux
naming convention that reflects the volser can avoid wasted debugging time.

6.3.2 IODF device numbers

We must know the device numbers (commonly known as addresses) used by the z/OS
system. (These may be changed after the z/OS system is installed. Changing involves
creating a new IODF data set, new IPLPARM member or members, and IPL of z/OS again.)
Most users of the AD-CD system accept the device numbers in the IODF supplied with the
AD-CD system. These are listed here:

ADDRESS DEVICE Purpose
00C 2540R Card reader. Useful as an emulated device.
00E-00F 1403-N1 Line printers. Useful as an emulated device.
120-15F 3380 Disks. (Control units defined for 120-127)
300-318 3390 3390 disks
400-40F OSA OSA
550-55F 3420 Round tape drives
560-56F 3480 Without COMPACT feature
580-58F 3490 Tape drives
590-59F 3590 Tape drives
600-60F 3990 Disks
700 3270 Terminal. AD-CD systems use as NIP & z/OS master console
701-73F 3277 Terminal. Normally for VTAM (TSO, CICS, etc)
900-910 3277 Terminal. Normally for VTAM (TSO, CICS, etc)
908 3270 Could be used as a z/OS console
909-91F 3277 Terminal. Normally for VTAM (TSO, CICS, etc)
A80-AFF 3390 Disks
E20-E23 CTC 3172s or CTC devices
E40-E43 CTC 3172s or CTC devices
1A00-1AFF 3390
2A00-2AFF 3390
3A00-3AFF 3390

4 The volser is written by the ICKDSF utility program (for a new volume), or is already present in a volume that was
downloaded or taken from a DVD.
112 IBM zPDT Reference and Guide

Most of the addresses are three hex digits, due to historical reasons. Both the AD-CD z/OS
system and zPDT system can work with four-digit addresses. These addresses have been
stable for many releases of the z/OS AD-CD system; however, it is possible they might
change in future releases.

In principle the 3390 IPL volume, for example, could be mounted at any address defined as a
3390. By AD-CD convention, the IPL volume and the volume containing the IODF and other
key data sets are usually mounted at addresses A80 and A82:

VOLSER ADDRESS Purpose
A3RES1 A80 IPL volume and key z/OS libraries
A3SYS1 A82 Spool space, LOGGER data sets, VSAM, etc

The A80 and A82 addresses are used in AD-CD documentation examples, but there is no
requirement to use specific addresses. The other volumes can be mounted at any convenient
address that is defined in the IODF as a 3390. In practice, many users simply start at address
A80 and increment it sequentially for each additional volume.

6.3.3 zPDT control files

Before the AD-CD system can be used, an appropriate devmap must be created. A basic
example is shown here:

$ cd /home/ibmsys1
$ gedit aprof23 (this is an arbitrary file name)

[system]
memory 9000m # define 9000 MB z System
processors 1 # use 2 or 3, if appropriate
3270port 3270 # port number for TN3270 connections

[manager]
name aws3274 0002 # define a few 3270 terminals
device 0700 3279 3274
device 0701 3279 3274
device 0702 3279 3274
device 0703 3279 3274
device 0704 3279 3274

[manager]
name awsckd 0001
device 0a80 3390 3990 /z/A3RES1 # (The “A3” prefix is for the
device 0a81 3390 3990 /z/A3RES2 # z/OS AD-CD released in December
device 0a82 3390 3990 /z/A3SYS1 # 2017. Later releases will have a
device 0a83 3390 3990 /z/A3CFG1 # different prefix)
device 0a84 3390 3990 /z/A3USS1
device 0a85 3390 3990 /z/A3USS2
device 0a86 3390 3990 /z/A3PRD1
device 0a87 3390 3990 /z/A3PRD2
device 0a88 3390 3990 /z/A3PRD3
device 0a89 3390 3990 /z/A3PAGA
device 0a8a 3390 3990 /z/A3PAGB
device 0a8b 3390 3990 /z/A3PAGC
device 0a8c 3390 3990 /z/A3USR1
#(continue with whatever additional volumes you installed.)
Chapter 6. AD-CD installation 113

Gaps in the assigned address numbers do not create a problem. The devmap can have any
name and be placed in any directory. It is best if it is in the directory you will use when starting
zPDT so that you do not need to enter a full path name when using it.

We suggest you do not define OSA devices for your initial z/OS startup. The OSA definitions
can be a little more complex and we suggest you verify that your basic z/OS system is
operational first.

6.3.4 IPL and operation

Start zPDT with an awsstart command. Among other functions this starts the zPDT device
manager that emulates local, channel-attached 3270 terminals. Using the awsstart
command creates a z1090 subdirectory in the current home directory (if it does not already
exist) and several zPDT-related directories below it.

$ cd /home/ibmsys1
$ awsstart aprof21 (use your devmap name)

(wait for messages. Press Enter to regain the $ prompt.)
AWSSTA014I Map file name specified: aprof22
0 Snapdump incident(s), RAS trace and RAS log files occupy 657046 bytes
in /home/ibmsys1/z1090/logs.
Associated files, logs, and core files occupy 10364 bytes in
/home/ibmsys1/z1090/logs

Using the same Linux window (or a different window, if you prefer), start at least two local
3270 sessions:

$ x3270 -port 3270 localhost &
$ x3270 -port 3270 localhost &
$ x3270 localhost:3270 & (another way to specify a port number)

Consider the following information:

� x3270 is the name of the program.

� In the devmap we assigned Linux TCP/IP port 3270 for this function. The port number is
arbitrary, but should not be used for any other purpose in your system. Port 3270 is
usually a good choice and is easy to remember.

� We want to connect to our own Linux system; this is indicated by the localhost operand.

� The ampersand (&) causes the x3270 program to execute in the background, leaving the
Linux window free for additional commands. We can recall and execute the x3270
command repeatedly to create multiple 3270 sessions.

The 3270 window displays identification lines if there has been no data sent to it by the z
System software. These lines indicate the terminal identity by address and LUname or IP
address. A number of options are available for working with these LUnames and these are
discussed in 3.3.3, “The aws3274 device manager” on page 43. The File and Options menus
at the top of the x3270 window can be used for a variety of functions. Changing the font size
(using the Options menu) has the effect of changing the 3270 window size.

The 3270 session for the z/OS console (address 700 for the AD-CD system) should be ready
before z/OS IPL. Next, issue the appropriate IPL command in the Linux window:5

$ ipl a80 parm 0a82cs

5 This example assumes you have mounted the IPL volume at address A80 and the volume containing the IODF and
IPL parameters at address A82. By AD-CD convention, the “cs” IPL parameter causes a JES2 cold start.
114 IBM zPDT Reference and Guide

After a few seconds, the initial z/OS messages appear on the 3270 session at address 700.
During the first IPL of the AD-CD system (or an IPL after a long period of non-use, or a
changed z System serial number) you might see messages similar to this one:

IXC420D REPLY I TO INITIALIZE SYSPLEX ADCDPL, OR R TO REINITIALIZE XCF

If this message is issued, go to the 3270 session displaying the message and enter the
following command:

r 00,i

After VTAM is started, the VTAM logo should display on the other 3270 sessions.6

There is usually some documentation for each AD-CD release that provides details about
different IPL parameters and TSO logon procedures. A brief summary for a recent z/OS
AD-CD system is shown here:

IPLparm LogonProcedure Purpose
0A82CS ISPFPROC Basic IPL without DB2, etc. Cold start JES2, CLPA
0A8200 ISPFPROC Subsequent basic IPLs. Warm start JES2
0A82DC DBSPROCB Initial IPL for DB2 V12, etc

User IBMUSER is always present on z/OS and is typically used for initial TSO logons. The
initial password for IBMUSER should be published with any AD-CD documentation. It is
typically SYS1 or IBMUSER. If there are security concerns about your system, change this
initial password as soon as possible.

The distributed logon procedures change with various AD-CD releases. The procedures are
in the ADCD PROCLIB data set.

The Linux command window that was used for the awsstart command should be kept open,
if possible. Asynchronous messages from zPDT are sent to this window. You can enter zPDT
commands from other windows, but it is possible that you might miss significant messages
that are sent to the original window.

6.3.5 Shutting down

z/OS should be shut down cleanly, if possible. Enter the s shutdown7 command at the z/OS
console and reply to any messages produced. The message ALL FUNCTIONS COMPLETE
indicates that JES2 can now be stopped with the command $PJES2. After JES2 ends,
System z operation can be stopped. The zPDT system is stopped with this command in the
Linux window:

$ awsstop

This produces several messages. It might be necessary to press Enter to obtain the Linux
prompt. Any 3270 windows may be closed at this point.

6.3.6 Startup messages

Messages such as the following are produced by the awsstart command:

AWSSTA014I Map file name specified: aprofa2
0 Snapdump incident(s), RAS trace and RAS log files occupy 657046 bytes

6 If the 3270 session displays a message Unsupported Function, simply use the 3270 Clear key to obtain the initial
VTAM display. Some TN3270e emulators encounter this initial message and others do not.

7 This shutdown command is not a standard z/OS function; additional command names might be present. These
trigger VTAMAPPL scripts to issue various commands involved in stopping z/OS.
Chapter 6. AD-CD installation 115

in /home/ibmsys1/z1090/logs
Associated files, logs, and core files occupy 10364 bytes in
/home/ibmsys1/z1090/logs

Glance at these messages, because SNAP dump incidents are indications of an internal
zPDT error, and if you want to work with your zPDT support, you will need this data. The
number of bytes used for various logs and dumps is usually not significant unless it becomes
too large. In general, zPDT manages these files automatically. However, if the numbers
displayed become too large (many megabytes) and if you are not actively working on a
problem with your zPDT support organization, you might want to clean up these files. To do
this, add the --clean option the next time you issue an awsstart command:

$ awsstart aprof11 --clean

You can get the --clean behavior every time by setting a Linux shell environment variable
Z1090_CLEAN=YES; however, we do not suggest doing this because it might easily result in the
removal of important debugging information in the event of a zPDT failure.

6.3.7 Local volumes

For our examples, we created a Linux partition mounted at /z. The process for adding your
own 3390 volumes is outlined here:

1. Create the emulated 3390 volume using a zPDT utility:

$ alcckd /z/WORK01 -d3390-3 (assuming you want a 3390-3 volume)

2. Update the devmap to include the new volume. (Assume address AA0 for this example.)

[manager]
name awsckd 0001
...
device AA0 3390 3990 /z/WORK01

3. Restart zPDT with the updated devmap.

4. IPL z/OS with the new volume present. z/OS will detect an uninitialized volume and vary it
offline.

5. Create and run an ICKDSF job to initialize the volume:

//BILLX JOB 1,OGDEN,MSGCLASS=X
// EXEC PGM=ICKDSF,REGION=1M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INIT UNIT(AA0) NOVERIFY VOLID(WORK01) VTOC(0,1,14)
/*

6. Vary the new volume online and begin using it:

VARY AA0,ONLINE (on the z/OS console)

6.4 Multiple operating systems

We can install multiple z System Operating Systems, limited only by the disk space we have
available. Every emulated 3390-3 volume uses approximately 2.8 GB of disk space and
3390-9 volumes use about 8.6 GB.

It is important to distinguish between installing additional emulated 3390 volumes (perhaps
with a variety of operating systems), and using the volumes. We can, of course, only IPL a
116 IBM zPDT Reference and Guide

single system at any one time in a zPDT instance.8 The volumes that might be “seen” by that
system depend on several factors:

� Does the current devmap contain all the desired volumes?

You can have multiple devmaps, each with a different selection of emulated volumes and
assigned addresses, but we can have only one devmap specified when we start a zPDT
instance. You cannot change the active devmap while zPDT is running.9 (You can change
the devmap file after zPDT is started, but this file change has no effect on the running
zPDT.)

� Do the device addresses in the devmap match suitable addresses in the IODF of the z/OS
system?

For example, if one of the emulated 3390 volumes is assigned address 190 (in the
devmap), then the default z/OS AD-CD IODF would not “see” the volume because this
address is not in the IODF. (z/VM does not have predefined addresses for various device
types, making this aspect of z/VM easier to use.)

� Duplicate disk volsers may not be present.

You may have duplicate volsers for emulated volumes on your PC disk, but the duplicates
should not be present in a given devmap.

� It might not be possible to use the common addresses typically associated with an
operating system.

For example, all the AD-CD documentation uses A80 as the IPL address for a z/OS
AD-CD system. We can have two (or more) AD-CD systems represented in the devmap at
the same time, but only one volume can have address A80 during any single execution of
zPDT. This does not prevent us from IPLing any of the (multiple) AD-CD systems present,
but we need to specify the correct address. An example might make this clearer:

Address VOLSER Purpose
A80 ZCRES1 IPL volume for z/OS 1.12 AD-CD system
A81 ZCRES2 Libraries for z/OS 1.12 AD-CD system
A82 ZCSYS1 Paging, spooling, VSAM for 1.12 AD-CD system
...
A90 SBRES1 IPL volume for z/OS 1.11S AD-CD system
A91 SBRES2 Libraries for z/OS 1.11S AD-CD system
A92 SBSYS1 Paging, spooling, VSAM for 1.11S AD-CD system
...

Assuming our devmap is configured for these addresses, we can ipl A80 parm 0A82CS to
run the 1.12 system or we can ipl A90 parm 0A92CS to run the 1.11S system. In either
case, the running z/OS system can access all the volumes of both z/OS systems. This is
convenient for migration purposes. The volumes are readdressed by simply changing the
addresses in the devmap.

We can run multiple z System Operating Systems at the same time by starting multiple zPDT
instances, but this requires more resources (especially PC memory).

8 This statement ignores the possibility of running multiple z/OS guests under z/VM.
9 This is not completely true. We can change the volume mounted on an emulated disk drive or tape drive with the
awsmount command.
Chapter 6. AD-CD installation 117

118 IBM zPDT Reference and Guide

Chapter 7. LANs

LAN setup can become complicated, partly because we must deal with physical LAN
hardware and interfaces in the underlying Linux as well as z System interfaces. At the z
System level, zPDT provides emulated OSA functions. OSA functions are closely tied to
CHPID usage (on a large z System) and we must deal with CHPID-like details at the zPDT
level.

7.1 OSA CHPIDs

LAN interfaces (other than tap interfaces) should be configured and tested on the base Linux
system before attempting to use one or more interfaces for OSA Express emulation.

The Ethernet adapters used by awsosa are identified by the path parameter in the devmap or
possibly by an interface name. The zPDT find_io command displays the current Ethernet
device configuration. A default zPDT path is assigned for most interfaces. (This is to provide
compatibility with earlier zPDT versions that did not allow an interface named to be specified
in the device map). Figure 7-1 shows an example of using a find_io command.

7

© Copyright IBM Corp. 2014, 2015, 2107. All rights reserved. 119

Figure 7-1 Output from find_io command

A default path might not be shown for all the listed interfaces. The rules are as follows:

� Every OSA definition in a device map must have a unique path specified.

� The path names displayed by find_io are the default values and are used if an interface
is not specified in the OSA definition.

� The default paths A0-A7 are used only for tap (tunnel) interfaces. Path A0 corresponds to
tap0, A1 corresponds to tap1, and so forth.

� The default paths F0-FF are assigned for other interfaces. If more than 16 other interfaces
exist, they must be specified with interface names in the device map.

� The Ethernet interface names are listed in alphabetical order, with exceptions.
Nomenclature such as ethx, em[1,2,3,4], empnsnn, and p<slot>p<port> cause the
motherboard interfaces to be listed first.

� Wireless interfaces with names something like wlan[0,1,2,...] are assigned after the other
interfaces. If there are fewer than eight other interfaces the wireless path assignments
begin with F8.

� Interface names br[x] and virbr[x] are listed but not assigned default paths because
these interfaces are not generally used for OSA Express emulation.

� Interfaces for pan[x] are listed and assigned default path names but have not been
investigated or tested for zPDT usage.

� Linux alias addresses are not listed and are not relevant for zPDT OSA use.

The other find_io details (status, MAC address, IP addresses) are informational. The IP
addresses are those used by the base Linux machine. z/OS (or another z System operating
system) running within a zPDT instance would use different IP addresses for these interfaces.

$ find_io
 FIND_IO for "ibmsys1@linux-8jfl"
 Interface Current MAC IPv4 IPv6
 Path Name State Address Address Address
------ ---------------- ---------------- ----------------- ---------------- ---------
 F0 eth0 UP, NOT-RUNNING 50:7b:9d:ac:73:45 * *
 F8 wlan0 UP, RUNNING e4:b3:18:c9:11:a2 192.168.1.108 xxxxxxx
 A0 tap0 DOWN 02:a0:a0:a0:a0:a0 * *
 A1 tap1 DOWN 02:a1:a1:a1:a1:a1 * *
 A2 tap2 DOWN 02:a2:a2:a2:a2:a2 * *
 ...

 Interface Current Settings
 Path Name RxChkSum TSO GSO GRO LRO RX VLAN MTU**
------ ---------------- ---------------- ----------------- ---------------- ---------
 F0 eth0 On* On* On* On* Off On* 1500
 F8 wlan0 Off Off On* On* Off Off 1500
.

 * Enabling these functions may lead to poor zPdt Performance,
 please refer to your zPdt documentation for details.

 ** To Enable Jumbo Frame Support, this MTU value and the MTU value for the
 Host Operating System must be set to > 1500.
 End of FIND_IO
120 IBM zPDT Reference and Guide

Additional information (new with zPDT GA8) lists offload settings for various offload functions
(tso, gso, gro, lro, and so forth) that can be controlled with the ethtool command. The MTU
(maximum transmission unit) listed is for Linux, not the hosted z operating system.

The devmap name statements for OSA devices might look like one of these:

name awsosa 0013 --path=A0 --pathtype=OSD --tunnel_intf=y
name awsosa 0023 --path=F0 --pathtype=OSD
name awsosa 0033 --path=FF --pathtype=OSD --interface=wlan0
name awsosa 0043 --path=E6 --pathtype=OSD --interface=eth0

Consider the following details for these examples:

� The first example is a normal tunnel definition and uses interface tap0, which corresponds
to default path A0.

� The second example uses path F0 which corresponds to whatever interface find_io
shows is associated with default path F0.

� The third example uses the --interface parameter to associate a Linux interface (wlan0)
with an arbitrary two-byte hexadecimal path name (FF). (This arbitrary path name must
not conflict with other path names in the device map.)

� The forth example illustrates that any path can be assigned to an interface.
� Only one path may be assigned to an interface.
� The MAC addresses for tap devices are arbitrary and not usually meaningful.

The IP address used during OSA Express emulation is set by the TCP/IP PROFILE
parameter for z/OS, or the equivalent when using a different z System operating system.
These addresses are not shown by find_io because they are not known to Linux.

OSA operation through a tunnel may have more parameters in the awsosa name statement:

name awsosa 50 --path=A0 --pathtype=OSD --tunnel_intf=y --tunnel_ip=10.1.1.1
 --tunnel_mask=255.255.255.0

The --tunnel_ip and --tunnel_mask defaults are as follows:

CHPID LinuxName default IP address default IP mask
 A0 tap0 10.1.1.1 255.255.255.0
 A1 tap1 10.1.2.1 255.255.255.0
 A2 tap2 10.1.3.1 255.255.255.0
 A3 tap3 10.1.4.1 255.255.255.0
and so forth through AF and tap15.1

In general, the multiple tunnel interfaces are intended for use with multiple zPDT instances.
The same tunnel interface cannot be shared by multiple zPDT instances. The default IP
address for the tap devices (such as 10.1.1.1) is the IP address at the Linux end of the tunnel.
The IP address at the z/OS end could be anything, but generally should be on the same
subnet. We typically use addresses such as 10.1.1.1 (Linux end) with 10.1.1.2 (z/OS end).

The awsosa device manager can emulate QDIO or non-QDIO operation. The mode is
selected by the pathtype parameter in the devmap. Type OSD specifies QDIO operation and
type OSE specifies non-QDIO operation. Non-QDIO operation is often noted as LCS
operation or 3172 operation, although these descriptions are not exactly correct. Non-QDIO
operation can involve TCP/IP or SNA (or both), although SNA usage is not supported with
zPDT. We suggest you always use OSD mode unless you have a specific reason for using
OSE mode.

1 The path names are expressed in hex and the Linux interface names have decimal suffixes.
Chapter 7. LANs 121

7.2 Scenarios

LAN setup can become complex and many variations are possible. We have selected five
basic scenarios as possible starting points. We strongly suggest that your initial zPDT usage
be with scenario 1, which has no z System TCP/IP functions.2 The second scenario is then a
simple migration from the first one. The third, fourth, and fifth scenarios provide different ways
to connect zPDT functions to an external network. The key difference between these last
three scenarios is whether you have an assigned, fixed IP address that can be used with your
z/OS (or z/VM, or z/VSE, or Linux for z Systems).

This chapter does not address more complex LAN use, such as might be used for multiple
guests under z/VM. Again, we strongly suggest you start with the basic scenarios described
in this chapter. After working through these you should then be familiar with the elements of
LAN use that are unique to zPDT.

We also suggest that you take time to study this chapter before starting your LAN setup. We
assume you have some familiarity with z/OS system programming tasks. The following
discussions are in terms of z/OS, but most of the concepts also apply to z/VM and z/VSE.

7.3 Overview of LAN usage

Four key factors permeate this discussion:

� We have the base Linux TCP/IP and z/OS TCP/IP. These are two functions that operate
separately. Always be aware of which TCP/IP is under discussion.

� You do not need any z/OS LAN functions (or z/OS TCP/IP functions) for 3270 access to
z/OS. Access can be through the aws3274 device manager and appears as local,
channel-attached terminals to z/OS. This is our first scenario.

� z/OS and the base Linux cannot communicate with each other through the same
hardware LAN adapter. Both can share the same hardware LAN adapter for all TCP/IP
functions except communicating with each other. zPDT implements a tunnel3 pseudo-LAN
to bypass this restriction.

� Standard z/OS is not a DHCP client. You cannot simply plug z/OS into any LAN outlet on
your office wall. To connect to z/OS TCP/IP you must have a fixed IP address that is valid
on your physical LAN segment.

At the time of writing, Linux bonding of several LAN adapters to create a single virtual adapter
has not been tested with zPDT.

7.3.1 Three 3270 interfaces

There might be three 3270 interfaces with z/OS:

2 If you follow the basic installation instructions in this document, you will be close to this environment.

Important: LAN setup is not part of the zPDT product. The examples in this chapter might
help you decide how to configure your TCP/IP setup, but you must provide the networking
skills to verify and implement your own design.

3 In strict Linux terminology, we do not have a tunnel interface; we use a tap interface rather than a tun interface. We
use the word tunnel in a more generic sense.
122 IBM zPDT Reference and Guide

� The aws3274 device manager accepts TN3270e connections4 (from the local Linux host
or over the Linux TCP/IP network.) The Linux TCP/IP port number for this connection is
specified in the 3270port parameter in the devmap. z/OS sees these 3270 sessions as
local, channel-attached, non-SNA, DFT terminals. Such terminals are suitable for z/OS
operator consoles and VTAM use. z/OS TCP/IP is not involved and does not need to be
running.

� z/OS TCP/IP provides TN3270e connections. Terminals connected this way are not
usable as z/OS operator consoles. TN3270e connections through z/OS TCP/IP are routed
to VTAM and may be used as TSO terminals, IBM CICS terminals, and so forth. z/OS
TCP/IP must be configured to use an OSA-Express adapter (in either non-QDIO or QDIO
mode). The OSA-Express functions are emulated by the awsosa device manager.5

� z/OS VTAM potentially could work with SNA 3270 Ethernet connections, working through
the awsosa device manager. However, SNA operation with zPDT has not been tested and
no support is available.

The same Ethernet adapter can be used for base Linux functions, such as Telnet, aws3274,
FTP, and so forth, and also for zPDT OSA connections. The following concepts are
Important:

� An emulated OSA-Express interface requires a hardware Ethernet adapter port on the
underlying Linux system (or a tunnel interface, as described later). A laptop computer
normally has one integrated Ethernet port. (It may also have integrated wireless functions,
which count as an additional port.) Additional Ethernet ports may be added by using PC
(PCMCIA-type) cards, although few zPDT users are expected to need more than one
Ethernet adapter.

� An emulated OSA-Express interface operating in QDIO mode is used only for z/OS
TCP/IP (or z/VM TCP/IP, and so forth). QDIO mode is also known as OSD mode.

� An emulated OSA-Express interface operating in non-QDIO mode can be used by z/OS
TCP/IP or SNA (although no SNA support is available for zPDT). Non-QDIO mode is
sometimes known as LCS mode or OSE mode.

� If you want to communicate between Linux TCP/IP and OSA TCP/IP on the same PC, a
tunnel environment must be established.6

7.4 Basic QDIO setup for z/OS

The following examples assume that OSA is used as a QDIO device, as opposed to an LCS
(non-QDIO) device. Consider the following information for QDIO operation:

� Three OSA devices are needed for a z/OS TCP/IP connection. The first should be at an
even-number address.

� z/OS devices involved must be defined as OSA devices in the z/OS IODF.

� A TRLE definition is needed in VTAMLST, pointed to by ATCCONxx in VTAMLST.

� The z/OS TCPIP PROFILE uses a IPAQENET device type.

4 A TN3270 connection (as opposed to a TN3270e connection) will be accepted, but extended data stream
capabilities are not present and some z/OS functions might not work correctly.

5 We describe this as an OSA-Express2 device manager, but this description is only approximate. This device
manager has attributes of the original OSA, OSA-Express, and OSA-Express2 channels available on larger
System z machines.

6 Another method can use two Ethernet adapters connected to the same network, one for the base Linux and one for
z/OS. We do not recommend that method.
Chapter 7. LANs 123

The awsosa definitions must include path numbers and path types for OSA devices. The path
type is OSD (for QDIO). The path is determined with the find_io command on your system.
We cannot predict exactly what that path might be.

Recent z/OS AD-CD systems include OSA devices starting at device number 400. When
using the QDIO interface to the emulated OSA-Express function, the key parameters might
look like the example in “More complete QDIO example” on page 143.

The presence of the --tunnel_intf parameter in the devmap indicates that a tunnel (tap
device) connection will be created. The default address for the Linux side of a tunnel is
10.1.1.1. The --path value is the CHPID number returned by the find_io command. The
CHPID value is usually A0 for a tunnel connection, F0 for a direct Ethernet LAN connection,
or F8 for a wireless connection, but these values should be verified with find_io.

A VTAM major node known as a TRL is required in VTAMLST for QDIO operation. This
VTAM node must be active before TCP/IP can be started. The VTAMLST ATCCONxx
member must point to the TRL entry in VTAMLST.

The PORTNAME (in the TRLE), the DEVICE name (second field), the LINK parameter (fourth
field), and the START name must match. The name is arbitrary, but it must be the same in all
four places.

7.5 Five scenarios

Five scenarios are described in this chapter. We use z/OS as the target operating system in
these descriptions, but z/VSE or z/VM or Linux for System z could be used with appropriate
adjustments. QDIO usage in z/OS requires parameters in VTAMLST, and these are included
in the setup examples.

The five scenarios are listed here:

1. No TCP/IP function is used in z/OS. Only emulated local 3270 connections are used
between the base Linux and z/OS. The base Linux could be connected to a larger LAN;
this is transparent to z/OS. Emulated 3270 sessions from the base Linux or from the LAN
can connect to z/OS, where they appear as local, channel-attached 3270 sessions.

2. z/OS TCP/IP is used to connect to the base Linux via a tunnel function.7 All z/OS TCP/IP
activity is directed to the tunnel. This allows TCP/IP connections between the base Linux
and z/OS, and these might be used for FTP, Telnet (to UNIX System Services), TN3270
connections directly to z/OS TCP/IP, and so forth. The base Linux could be connected to
an external LAN, but this is transparent to z/OS and external LAN connections cannot be
made to z/OS.

3. The same basic setup as scenario 2, but with additional customization to enable a simple
NAT function in the base Linux. This permits TCP/IP connections from z/OS to the
external LAN, but not from the external LAN to z/OS. (That is, only outgoing TCP/IP
sessions may be initiated. With additional NAT/iptables customization, incoming TCP/IP
connections from the external LAN to z/OS could be handled. This additional
customization might involve non-standard port numbers for either Linux or z/OS.)

4. Instead of the NAT functions used in option 3, an additional OSA interface is used by z/OS
to connect to the LAN. A fixed IP address is needed for z/OS. TCP/IP communication
between z/OS and the base Linux is through the tunnel.

7 The correct terminology is “connect via a Linux tap interface.” However, we use the term tunnel in a generic sense
to describe this connection.
124 IBM zPDT Reference and Guide

5. A different NAT function is used that allows incoming and outgoing connections to z/OS.
In this scenario, only the tunnel OSA is used by z/OS and both tunnel and external LAN
traffic flow through it. The z/OS setup is the same as for scenario three, but the base Linux
setup is different. A fixed IP address is needed for z/OS.

In these scenarios, the names assigned to the OSA interfaces for z/OS are eth1 and eth2 (if
needed). These examples use eth1 for the tunnel connection to the base Linux..

OSA definitions for zPDT require the use of a CHPID number for the path parameter. The
CHPID path for the tunnel is assumed to be A0 and the path for the external LAN is assumed
to be F0. Verify these paths with the zPDT find_io command. This command might not
display information for tap devices until after zPDT is started at least once with a tunnel
definition included in the devmap.

Figure 7-2 suggests a way to select the most appropriate scenario.

Figure 7-2 Scenario overview

Scenarios 3 and 5 produce similar results in different ways. Scenario 3 requires more
customization in z/OS TCP/IP and scenario 5 requires more customization in the base Linux.

7.5.1 Scenario 1

Scenario 1 is illustrated in Figure 7-3.

Issue MVS command for
RESOLVER REFRESH

This choice means a LAN
connection only between
the base Linux and z/OS

Customize SYS1.PROCLIB
and BPXPRMxx members

Make RESOLVER
changes permanent?

Have assigned, fixed
IP address for z/OS?

Need external LAN
connection to z/OS?

Need LAN to z/OS?

Scenarios 3 and 5 require running a Linux script file before starting zPDT

Scenario 1No

No

No

No

No

Yes

Yes

Yes

Yes

YesEnd

End

End

End

Scenario 2

Scenario 3
Scenario 4

or
Scenario 5

Customize GLOBAL
data

Want name server
available to z/OS?
Chapter 7. LANs 125

Figure 7-3 Scenario 1 connectivity

With this option, no z/OS TCP/IP setup is required and z/OS TCP/IP does not need to be
active. (The AD-CD z/OS system starts TCP/IP by default. You could remove the associated
start statement in a PARMLIB member if you do not want the automatic start.) You can use
up to 31 TN3270 sessions for connections to TSO or other VTAM functions. (One TN3270
session is normally used for the IBM MVS operator console.) Various TN3270 emulators can
be used, including x3270 and PCOMM. These 3270 emulator sessions might be in the base
Linux or through a LAN connection to the base Linux. (The LAN connection to an external
network is optional.) The only upload/download method between the base Linux and z/OS is
by using the IND$FILE functions.8

No OSA definitions are needed in the devmap. The relevant devmap definitions are for the
3270 port and for several local 3270 devices.

[system]
....
3270port 3270 #the port number is arbitrary. 3270 is easy to remember.

[manager]
name aws3274 0001
device 0700 3279 3274 #Address 0700 is the MVS console in the AD-CD systems
device 0701 3279 3274 #Other systems may want different addresses
device 0702 3270 3274
...

Based on this example, connections from the base Linux might start as follows:

$ x3270 -port 3270 localhost &

A connection from the external LAN might be started as follows:

$ x3270 -port 3270 9.111.222.123 &

This assumes the DHCP address assigned to the local Linux is 9.111.222.123. You can find
the assigned DHCP address for your Linux with the /sbin/ifconfig command.9

8 These are often known as file transfer functions in the 3270 emulators.
9 However, if your Linux is connected to a local router the DHCP address may be valid only in the local network

created by that router. IP addresses in the 10.xxx.xxx.xxx and 192.168.xxx.xxx range are usually in this category.

TCP/IP

Local channel-connected 3270s
Linux base z/OS

LAN adapter

PCOM
x3270

(No TCP/IP)

IOS

VTAM

The Linux connection to the outside
world is optional. If connected, it may be
via DHCP or a fixed IP address.

DHCP or fixed IP address

Network

aws3274

x3270
126 IBM zPDT Reference and Guide

Making a TN3270 connection to aws3274 on the base Linux (or any other service on the base
Linux) from an external LAN might present routing difficulties. The LAN must have route
definitions that allow both the external TN3270 system and the base Linux to find routes to
each other. This routing requirement is not unique to zPDT. If you have a firewall running in
the base Linux, you might need to create a “hole” in it for the connection to port 3270 (or
whatever port you defined for aws3274 connections). If your firewall is based on iptables (as
is common for most current Linux releases), commands such as the following might be used:

$ su (switch to root)
iptables -I INPUT -p tcp --dport 3270 -j ACCEPT
exit (leave root)

These commands would be entered through a Linux terminal window. In general, details
about managing your Linux firewall and your external routing controls are beyond the scope
of this document.

7.5.2 Scenario 2

Scenario 2 builds on scenario 1, and adds a direct TCP/IP connection between z/OS and the
base Linux, as shown in Figure 7-4.

Figure 7-4 Scenario 2 connectivity

This TCP/IP connection is through a “tunnel” interface between z/OS and the base Linux. The
physical LAN adapter is not involved. The 10.x.x.x IP addresses shown are arbitrary, but we
suggest using non-routable addresses on an isolated subnet. The tap interface (and
associated IP address) are created automatically when zPDT is first started (assuming the
correct OSA definitions are in the devmap). No additional Linux setup is needed. z/OS
TCP/IP must include an OSA definition for its interface.

Recent AD-CD systems include OSA devices starting at device number 400. When using the
QDIO interface to the emulated OSA-Express2 function, the key parameters might look like
the following example:

Devmap

(The 3270 port and aws3274 device manager definitions used in the
 previous example should be included here.)

[manager]
name awsosa 22 --path=A0 --pathtype=OSD --tunnel_intf=y
device 400 osa osa

TCP/IP

Local channel-connected 3270s
Linux base z/OS

LAN adapter

PCOM
x3270

IOS

VTAM

DHCP or fixed IP address

Network

aws3274

x3270

tap0
10.1.1.1

eth1
10.1.1.2

One OSA
port for z/OS

TCP/IP
Chapter 7. LANs 127

device 401 osa osa
device 402 osa osa

z/OS VTAMLST TRL definition
OSATRL1 VBUILD TYPE=TRL
OSATRL1E TRLE LNCTL=MPC,READ=(400),WRITE=(401),DATAPATH=(402), X
 PORTNAME=PORTA,MPCLEVEL=QDIO

z/OS TCP/IP Profile
...
DEVICE PORTA MPCIPA
LINK ETH1 IPAQENET PORTA
HOME 10.1.1.2 ETH1
...
BEGINRoutes
; Destination Subnet Mask FirstHop Link Size
ROUTE 10.0.0.0 255.0.0.0 = ETH1 MTU 1492
ROUTE DEFAULT 10.1.1.1 ETH1 MTU 1492
ENDRoutes
...
START PORTA

The external LAN connected to Linux and the “tunnel LAN” between Linux and z/OS are
completely separate in this example, and there is no communication between them. There is
no connection from z/OS to the outside world, but all normal TCP/IP functions between the
base Linux and z/OS may be used. Examples (from the Linux side) include:

$ x3270 -port 3270 localhost & (connect via “local 3270” channel)
$ x3270 10.1.1.2 & (connect via z/OS TCP/IP)
$ ftp 10.1.1.2 (connect to z/OS FTP)
$ telnet 10.1.1.2 102310 (connect to z/OS UNIX System Services)

From the z/OS TSO side, we might use a command such as this one to connect to FTP on
the base Linux. (This assumes you have FTP installed and available on the base Linux.)

ftp 10.1.1.1 (entered in ISPF option 6, for example)

Tunnel IP addresses
The IP addresses used for the tunnel (10.1.1.1 and 10.1.1.2 in the examples) are not related
to any other IP addresses you might use. They are not related to any external IP addresses.
They should not be on the same subnet as any external IP addresses you might use. These
tunnel addresses are solely for use between the base Linux and TCP/IP stacks running within
the zPDT environment.

The IP address for the base Linux side of the tunnel defaults to 10.1.1.1 (for the first tunnel
OSA), but may be changed in the devmap. The address at the other end (z/OS or z/VM) must
be different but should be on the same subnet as determined by the netmask. The 10.x.x.x
addresses (and 192.168.x.x addresses) are not routable. You should not attempt to make
them visible to your external network users.

In our examples, the 192.168.x.x addresses are assumed to be on the “local side” of a router,
which is probably a NAT router. As used in our examples, the 192.168.x.x addresses are
visible and usable by other systems connected to the local side of this router.

10 The AD-CD z/OS system uses port 1023 for a simple Telnet connection to UNIX System Services. You might need
to define this functions as described in 12.17, “OTELNET” on page 244.
128 IBM zPDT Reference and Guide

7.5.3 Scenario 3

Scenario 3 is depicted in Figure 7-5.

Figure 7-5 Scenario 3 connectivity

We can take the scenario 2 setup and extend it to connect z/OS to the external LAN by using
a NAT11 function in the base Linux. This requires a more complex setup. However, it has the
major benefit that an external assigned, fixed IP address is not needed for z/OS. With this
setup, z/OS has the fixed address 10.1.1.2 (in our examples), but this is not an externally
assigned address; it is visible only internally in our local Linux system.

The following text describes how to do this dynamically (through commands each time the
system is started). This example is based on openSUSE 11.0; there might be minor
differences for other Linux distributions.

The first step is to create a Linux file in the zPDT home directory, as shown here. We named
this file masq.

$ cd ~
$ gedit masq (the following lines start in column 1 in the file)
if [[$EUID -ne 0]]; then
 echo ‘You must su to root to run this command’ 1>&2
 exit 1
fi
echo ‘Your firewall must be enabled for this command to be meaningful’
echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -F FORWARD
iptables -P FORWARD ACCEPT
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
iptables -I INPUT -p tcp --dport 3270 -j ACCEPT
echo ‘Done. Exit from root’

(The iptables command is located in /usr/sbin on some Linux releases. You might need a
complete path name for the command.) The eth0 operand represents the NIC adapter name
on your Linux. It might not be eth0; the author’s current notebook uses the name enp0s25, for
example. There are many ways to display the NIC name, including the zPDT find_io
command.

11 NAT is Network Address Translation.

TCP/IP

Local channel-connected 3270s
Linux base z/OS

iptables used
to create NAT
environment

PCOM
x3270

IOS

VTAM

DHCP or fixed IP address

Network

aws3274

x3270

tap0
10.1.1.1

eth1
10.1.1.2

One OSA
port for z/OS

TCP/IP

Default route
to 10.1.1.1
Chapter 7. LANs 129

Use the same devmap and z/OS PROFILE parameters shown for scenario 2. Assuming your
base Linux is connected to an external LAN (either with a fixed IP address or a DHCP
address), activate your Linux firewall (if not already done) and activate the iptable changes:

$ cd ~
$ chmod 755 masq (make it executable)
$ su (switch to root)
./masq (execute the command script we just created)
exit (exit from root)

You should be able to access external network sites from z/OS. For example, at the time of
writing the www.ibm.com site is IP address 104.107.41.53. From a TSO command line, try
the following command:

ping 104.107.41.53

You should be able to ping any Internet sites that are known to respond to pings,12 if you can
find their numeric IP address.

You might need to use the passive option with FTP connections. Complex applications that,
once initiated from z/OS, might trigger incoming connections on other ports might not work.
Incoming connections to port 3270 on the base Linux are allowed by our script; this provides
a hole in the standard Linux firewall for using the local 3270 connections. Linux port 3270
(using our examples) is the aws3274 device manager and the connection results in a z/OS
3270 session for the external user.

Incoming connections
This setup has complications for incoming (from the external LAN) connections. Remember
that external systems see only the IP address of the base Linux. (This is probably a
DHCP-assigned address, and the address must be communicated to external users in some
manner.) If an external user attempts to connect to port 23, for example, does the user want
Linux port 23 or z/OS port 23? (This assumes the user can get through the Linux firewall,
which is another complication.) Port 23 is a well-known (default) port number for Telnet
connections (including TN3270e Telnet).13

One way around this problem is to use a non-standard port number for Telnet on either Linux
or z/OS. Another way around the problem is to simply disallow port 23 connections to either
Linux or z/OS. (The issue applies to all port numbers; we are using port 23 as an example.)

As an example, adding the following line to the masq script routes external connections for
port 23 to z/OS:

iptables -t nat -A PREROUTING -p tcp -i eth0 --dport 23 -j DNAT --to 10.1.1.2

If we add this command to our script, then an external user would have two paths for a
TN3270e connection (assuming the Linux IP address is 192.168.1.2):

$ x3270 192.168.1.2 & Forwarded to z/OS TCP/IP port 23

Important: The specific iptables commands listed here were suitable for the Linux we
used at the time we tested them. Linux changes. In particular, LAN usage details tend to
change fairly frequently. You might need to explore various approaches to these scenarios
that manipulate iptables.

12 Our informal tests indicate that most common Internet sites no longer respond to pings. You can verify your results
by issuing pings from the base Linux system.

13 Some Linux systems have completely dropped Telnet service (that listens on port 23); our comments apply to all
ports.
130 IBM zPDT Reference and Guide

$ x3270 192.168.1.2:3270 & Connect to Linux port 3270 (aws3274)

Be aware that after this iptables command is issued, we no longer have a way to connect to
Linux port 23.

Extending this example to other ports, and determining what services might be wanted on
both Linux and z/OS, becomes more complex and depends on the exact base Linux
configuration for firewalls and available services.

7.5.4 Scenario 4

This scenario provides a direct connection from z/OS to the external LAN. A NAT function is
not used. Only a single physical LAN adapter is needed and is used by both Linux and z/OS.
z/OS must have an external assigned, fixed IP address for this to work. Our example uses
address 192.168.0.61, but this is just an example. You must have a proper assigned IP
address for this option to work. Remember that assigned, fixed, IP addresses are not
portable; they must be used on a physical LAN segment that is the router target for the
associated subnet.

Figure 7-6 illustrates this configuration. The figure shows two logical connections to the
external network, but this is accomplished by a single physical cable connection.

Figure 7-6 Scenario 4 connectivity

With this configuration the IP functions of z/OS and the base Linux are quite separate. The
tunnel addresses (10.1.1.x) are not visible from the external network.

The various definition files should contain the following details:

Devmap
(The 3270 port and aws3274 device manager definitions used in the
 previous examples should be included here.)

 [manager]
name awsosa 0024 --path=A0 --pathtype=OSD --tunnel_intf=y
device 400 osa osa
device 401 osa osa
device 402 osa osa

TCP/IP

Local channel-connected 3270s
Linux base z/OS

PCOM
x3270

IOS

VTAM

DHCP or fixed IP address

aws3274

x3270
tap0

10.1.1.1

eth1
10.1.1.2

Network TCP/IP

eth2
192.168.0.61 Two OSA

ports for z/OS

The "fixed" address

Fixed IP address for z/OS

(still one physical LAN adapter)
Chapter 7. LANs 131

[manager]
name awsosa 0022 --path=F0 --pathtype=OSD
device 404 osa osa
device 405 osa osa
device 406 osa osa

z/OS VTAMLST
OSATRL1 VBUILD TYPE=TRL
OSATRL1E TRLE LNCTL=MPC,READ=(400),WRITE=(401),DATAPATH=(402), X
 PORTNAME=PORTA,MPCLEVEL=QDIO
OSATRL2E TRLE LNCTL=MPC,READ=(404),WRITE=(405),DATAPATH=(406), X
 PORTNAME=PORTB,MPCLEVEL=QDIO

z/OS TCP/IP Profile
DEVICE PORTA MPCIPA
LINK ETH1 IPAQENET PORTA
HOME 10.1.1.2 ETH1

DEVICE PORTB MPCIPA
LINK ETH2 IPAQENET PORTB
HOME 192.168.1.61 ETH2 <==this is the fixed IP address

...
BEGINRoutes
; Destination Subnet Mask FirstHop Link Size
ROUTE 10.0.0.0 255.0.0.0 = ETH1 MTU 1492
ROUTE 192.168.1.0 255.255.255.0 = ETH2 MTU 1492
ROUTE DEFAULT 192.168.1.1 ETH2 MTU DEFAULTSIZE
ENDRoutes
...
START PORTA
START PORTB

Again, remember that the 192.168.x.x addresses cannot be used for “real” Internet
connections. You must supply your assigned, fixed IP address and also supply a default
address for your network connection.

With this scenario, connections to and from z/OS and the external network are independent
from base Linux connections. However, you must still use the 10.1.1.x addresses for TCP/IP
communication between the base Linux and z/OS. That is why we show two OSA definitions
and connections in this example.

7.5.5 Scenario 5

Figure 7-7 shows connectivity for this scenario.
132 IBM zPDT Reference and Guide

Figure 7-7 Scenario 5 connectivity

We can take the scenario 2 setup and extend it to connect z/OS to the external LAN by using
a NAT function in the base Linux in a different way. This method requires an assigned, fixed
IP address for z/OS.

A single OSA interface in z/OS handles both tunnel traffic (to the base Linux) and external IP
traffic. Incoming connections to z/OS are handled, as well as outgoing connections.

The following text describes how to do this dynamically (using commands each time the
system is started). Note that this method uses an IP alias address in the base Linux.

The first step is to create a Linux file in the zPDT home directory. We use a more elaborate
script file here to better allow it to be expanded in the future. We named this file nat2.

$ cd ~
$ touch nat2
$ gedit nat2 (the following lines start in column 1 in the file14)
if [[$EUID -ne 0]]; then
 echo ‘You must be root to run this command’ 1>&2
 exit 1
fi
echo ‘Your firewall must be enabled for this command to be meaningful’
CHPID_A0_INTERFACE=eth0
CHPID_A0_EXTERNAL_IP=192.168.1.80 (your assigned IP address)
CHPID_A0_EXTERNAL_BC=192.168.1.255 (brodcast address for it)
CHPID_A0_EXTERNAL_NM=255.255.255.0 (net mask for it)
CHPID_A0_VIRTUAL_IP=10.1.1.2

echo 1 > /proc/sys/net/ipv4/ip_forward
echo ‘IP forwarding set’
iptables -t nat -F
echo ‘nat table flushed’

echo ‘External IP address for System z is ‘ $CHPID_A0_EXTERNAL_IP
echo ‘Real LAN interface is ‘ $CHPID_A0_INTERFACE
echo ‘Tap (tunnel) address for System z is ‘ $CHPID_A0_VIRTUAL_IP

14 Four lines in this file end with a back slash (\) to indicate that the logical line is continued on the next printed line.
You can enter each of these lines as a single long line (without the back slash).

TCP/IP

Local channel-connected 3270s
Linux base z/OS

iptables used
to create NAT
environment

PCOM
x3270

IOS

VTAM

DHCP and fixed IP

Network

aws3274

x3270

tap0
10.1.1.1

eth1
10.1.1.2

One OSA
port for z/OS

TCP/IP

Default route
to 10.1.1.1
Chapter 7. LANs 133

echo ‘External netmask and broadcast address are ‘ $CHPID_A0_EXTERNAL_NM \
$CHPID_A0_EXTERNAL_BC

ifconfig $CHPID_A0_INTERFACE:0 $CHPID_A0_EXTERNAL_IP netmask \
$CHPID_A0_EXTERNAL_NM broadcast $CHPID_A0_EXTERNAL_BC up

iptables -t nat -A POSTROUTING -o $CHPID_A0_INTERFACE -s \
$CHPID_A0_VIRTUAL_IP/32 -j SNAT --to $CHPID_A0_EXTERNAL_IP

iptables -t nat -A PREROUTING -i $CHPID_A0_INTERFACE -d \
$CHPID_A0_EXTERNAL_IP/32 -j DNAT --to $CHPID_A0_VIRTUAL_IP

echo ‘Done. Please exit from root’

Use the same devmap and z/OS PROFILE parameters shown for scenario 2. Assuming your
base Linux is connected to an external LAN (either with a fixed IP address or a DHCP
address), activate your Linux firewall (if not already done) and activate the iptable changes:

$ cd ~
$ su (switch to root)
./nat2 (execute the command script we just created)
exit (leave root)

You should be able to access external sites from z/OS. External LAN users can connect to
your base Linux by using its DHCP address15 and connect to z/OS by using its assigned fixed
address.

If you use LCS mode connections (non-QDIO, OSE) for some reason, this scenario has an
additional benefit. Unwanted packets are filtered out at the base Linux level instead of being
forwarded to z/OS, where many cycles might be required to filter out unwanted packets.

7.5.6 Scenario comparison

Table 7-1 summarizes the characteristics of the five scenarios. Note the from and to words in
the descriptions.

Table 7-1 Scenario characteristics

15 You can also have an assigned, fixed address for your base Linux.

Characteristic 1 2 3 4 5

Number of local 3270 sessions from
base Linux (including external LAN) to
z/OS (using the aws3274 manager)

32 32 32 32 32

Number of OSA definitions in z/OS 0 1 1 2 1

Number of “command files” needed to
run in base Linux (iptables)

0 0 1 0 1

External LAN connection from or to z/OS
(not counting local 3270 sessions)a?

No No Yesb Yes Yes

TN3270, FTP, Telnet from local Linux to
z/OS TCP/IP. FTP from z/OS to local
Linux

No Yes Yes Yes Yes

TN3270e from external LAN to z/OS No No Maybec Yes Yes
134 IBM zPDT Reference and Guide

The fundamental difference between scenario 3 and scenarios 4 and 5 is that the latter
require an assigned, fixed address for z/OS. Scenario 3 has complications for incoming
connections (from the external LAN) to z/OS; 4 and 5 do not have this restriction. The primary
difference between 4 and 5 is where the external LAN interface appears; with scenario 4 it is
defined to z/OS; with scenario 5, it is defined in the base Linux.

7.5.7 z/OS resolver

The most recent AD-CD system16 (at the time of writing) starts a resolver function as follows.
The “xxxx” qualifier in the dataset names changes with each z/OS AD-CD release.

� The job is in ADCD.xxxx.PROCLIB(RESOLVER). This has the SETUP DD statement pointing to
ADCD.xxxx.TCPPARMS(GBLRESOL), which contains the primary controls for the resolver.

� The GBLRESOL member contains the following lines, with our modifications highlighted
in bold:

DEFAULTTCPIPDATA(‘ADCD.xxxx.TCPPARMS(GBLTDATA)’)
GLOBALTCPIPDATA(‘ADCD.xxxx.TCPPARMS(GBLTDATA)’)
GLOBALIPNODES(‘ADCD.xxxx.TCPPARMS(GBLIPNOD)’)
DEFAULTIPNODES(‘ADCD.xxxx.TCPPARMS(GBLIPNOD)’)
COMMONSEARCH
CACHE
CACHESIZE(200M) <---this is probably too large
MAXTTL(2147483647)
UNRESPONSIVETHRESHOLD(15) <---we changed this to 15

� The GBLTDATA member (leaving out the comments) contained these lines:

TCPIPJOBNAME TCPIP
S0W1: HOSTNAME S0W1

FTP from z/OS to external LAN No No Yesd Yes Yes

Externally assigned IP address needed
for z/OS

No Noe Noe Yes Yes

Telnet connection to UNIX System
Services

No Yes, only from
base Linux

Yes, only from
base Linux

Yes Yes

Browser connection from base Linux to
z/OS

No Yes Yes Yes Yes

Browser connection from external LAN
to z/OS

No No Maybec Yes Yes

Browser or FTP connection from
external LAN to base Linux

Yes Yes Yes Yes Yes

a. The local 3270 sessions are based on LAN connections to Linux (to the aws3270 device
manager). The LAN connection is not to z/OS.

b. Only outgoing connections from z/OS to the external LAN may be used unless additional
iptables commands are used. The additional command functions are likely to require the use
of non-standard port numbers.

c. This is an incoming connection and is not possible in the most basic iptables example. Incoming
connections may be accepted when an additional iptables setup is used.

d. This is an outgoing connection and may be used. A passive FTP connection may be needed.
e. The “locally fixed” IP address (10.1.1.2 in the examples) is not an assigned IP address.

Characteristic 1 2 3 4 5

16 The November 2016 z/OS AD-CD.
Chapter 7. LANs 135

DOMAINORIGIN OGDEN.ITSO.IBM.COM <---use your own domain name !
NSINTERADDR 167.206.10.178 <---find your own name server
NSPORTADDR 53
RESOLVEVIA UDP
RESOLVERTIMEOUT 15
RESOLVERUDPRETRIES 1
ALWAYSWTO NO

� The GBLIPNODE member contains something like this line:

10.1.1.2 S0W1.OGDEN.ITSO.IBM.COM <---use your own node name

Before using the resolver for “real” work on the Internet your z/OS system must have access
to the “real” Internet. We used the iptables script shown in 7.5.3, “Scenario 3” on page 129.

Our operational procedure was similar to these steps:

1. Create the Linux iptables script just mentioned, change the permissions to make it
executable, su to root, and execute it.

2. Edit the ADCD.xxxx.TCPPARMS(GBLTDATA) member as needed, based on the comments
above.

3. Stop and restart the resolver:

(MVS console) P RESOLVER
 S RESOLVER,SUB=MSTR

4. Go to IPSF option 6 and try the NSLOOKUP WWW.IBM.COM command. You then see the
requested address translation.

Comments
You must find an appropriate name server. The 167.206.10.178 address shown is simply an
example. An easy way to do this, assuming your Linux system is connected to the Internet, is
to issue a Linux command (such as nslookup WWW.IBM.COM) and observe what name server is
used to resolve the name. Provide a DOMAINORIGIN name that does not obviously conflict
with known names. In our simple example, this domain name is not used for anything.

For more resolver setup information, see Communications Server for z/OS V1R9 TCP/IP
Implementation Volume1: Base Functions, Connectivity, and Routing, SG24-7532.

7.5.8 Local router LAN setups

Creating a working LAN environment can be frustrating because many details must work
together. Sometimes the problem lies outside your environment, with external routers that are
not configured for the “new” systems you are placing on the LAN. We suggest using a small,
inexpensive personal router for initial zPDT LAN setup, as shown in Figure 7-8.
136 IBM zPDT Reference and Guide

Figure 7-8 LAN debugging setup

The advantage of using this test setup is that there are no unknown external LAN
complications. The “local connections” to the router can be served DHCP addresses by the
router, or they can be assigned fixed addresses on the router subnet. These routers typically
use IP addresses of 192.168.1.x. Many such routers also provide wireless connections and
you can also explore these. (We suggest initial use with a wired connection to Linux, just to
simplify the first setup.)

After you have an environment like this working, you can transfer the operation to a larger
network. Although this suggested environment is almost trivial, we often find it quite useful.

Remember that the Linux firewall (if enabled) might affect any external connections. For initial
debugging (especially in a private environment, as shown here) we suggest that the firewall
be disabled until you verify that your basic LAN setup is working. We have observed that the
Security Enhanced Linux (SEL) protection might need to be disabled or modified for some
functions, such as FTP.

In most cases the zPDT user has a single network Ethernet cable interface available,
probably connected to a router somewhere external to the user.

This external network interface typically expects a DHCP client, and this presents two
problems:

� The System z operating system might not operate as a DHCP client. That is, it may want a
fixed IP address. In general, network-connected users do not have fixed IP addresses.

� The zPDT machine may have multiple LAN adapters, requiring multiple network
connections.

Most modern personal routers, such as shown in Figure 7-8, contain a NAT function that you
can configure. This NAT function allows your machine (base Linux and z/OS) to work with
fixed IP addresses (provided by the NAT router).17 These are typically in the 192.168.xxx.xxx
range. The router, in turn, works with variable DHCP addresses provided by your external
network.

17 The router might also function as a DHCP server, providing DHCP addresses in a portion of its address range.

Windows
(and PCOM)

Small
personal

router
Another
Linux

(probably
with x3270

Linux and
zPDT

Connect to
external

LAN
(optional)

Optional wireless
connection to
Linux and your
other local PCs

"local connections"

192.168.1.x
Chapter 7. LANs 137

Using this, we specified the base router IP address (192.168.1.1) as the default gateway
address in our TCP/IP definitions (for both Linux and z/OS). For a multiuser system, we
connected additional PCs to the router (which supplied its own range of DHCP addresses, if
requested). The additional PCs can connect to aws3270 (using the Linux IP address and port
3270) or to OSA (using the IP address assigned, specified in the z/OS TCP/IP PROFILE).

Most routers can be configured to pass incoming port connections to specific local IP
addresses. This requires some work with the router software, but allows the handling of
incoming connections to z/OS (coming from a DHCP-based external network).

The configuration described in 7.5.3, “Scenario 3” on page 129 and in 7.5.7, “z/OS resolver”
on page 135 were used with a local router and the iptables script described with the scenario.

7.6 Performance problems

At the time of writing, we were aware of two specific problems that impact OSA performance.

� If frames larger than expected are used, an excessive number of frames might be dropped
(causing a retransmission). This might not be noticed unless careful measurements or
comparisons are made. We believe this problem is resolved by including the sysctl
parameter that is now recommended:

net.core.rmem_max=1048576

� If newer Linux kernels are installed, there might be a drastic slowdown of OSA
performance that would be immediately obvious. This is due to Linux attempting to offload
various functions into the adapter, which is not acceptable to the current awsOSA
implementation. One or more of the following commands, intended to disable the Linux
offloading of IP functions, might improve the situation:

ethtool -K eth0 rx off (disable RX checksumming offload)
ethtool -K eth0 tso off (disable TCP segmentation offload)
ethtool -K eth0 gso off (disable generic segmentation offload)
ethtool -K eth0 gro off (disable generic RX offload)
ethtool -K eth0 lro off (disable large RX offload)
ethtool -K eth0 rxvlan off (if you are using VLANs)

ethtool -k eth0 (display status of NIC)
ethtool -S eth0 (display statistics)
ethtool -K em1 rx off (newer style of NIC naming)
ethtool -K enp0s25 rx off (newer style of NIC naming)

You might need to experiment with these commands.18 One user reported the following
combination most effective for his system.

ethtool -K eth0 rx off
ethtool -K eth0 gso off
ethtool -K eth0 rxvlan off

Unfortunately, such commands must be entered after each Linux boot. We suspect that
effective combinations of these options differ with various Linux levels and with various NIC
adapters.

IBM has not published performance specifications for OSA. When working correctly, informal
observation indicates that FTP throughput might be in the 5 - 10 MBps (megabytes/second)

18 We found that Ubuntu accepted only the gso and gro changes.
138 IBM zPDT Reference and Guide

range, assuming an unconstrained network in a dedicated environment. If your performance
is much worse than this, consider experimenting with the ethtool commands described here.

7.6.1 Jumbo frames

A Linux jumbo frame is a LAN frame larger than 1500 bytes. zPDT GA8 supports jumbo
frames up to 9000 bytes,19 potentially providing performance improvements for LAN
transfers. To use jumbo frames you must set two parameters:

� The MTU size in z/OS TCP profile statements (or the equivalent statements for other z
operating systems) should be set to the desired value, such as 8992.

� You must also change the Linux MTU size for the corresponding interface. (The default
Linux MTU size is 1500.) The exact method for changing the Linux MTU size varies with
different Linux distributions. In all cases, you must determine the interface name (such as
eth0, wlan0, or tap0 in the previous find_io example). Your Linux distribution may vary
slightly, but the following illustrates where we made the necessary change:

– SUSE

Go to /etc/sysconfig/network and look for a file name that reflects the interface you are
using; for example, ifcfg-eth0. Edit this file and look for a line such as:

MTU=’’

Change this to MTU=’8992’

– Red Hat

Go to /etc/sysconfig/network-scripts and make a similar change as shown for SUSE. If
an MTU line is not present, add it. The single quote marks might not be needed.

– Ubuntu

We suggest using the ifconfig xxxx mtu 8992 command described below.

A temporary change for any Linux (until Linux is rebooted) can be made thus:

ifconfig eth0 mtu 8992 (use the appropriate interface name)

Jumbo frames are associated with gigabit Ethernet operation, meaning wired LANs and not
wireless WANs. Your complete LAN connection,20 between your system and whatever
system you connect with, must be capable of handling jumbo frames, otherwise the use of
jumbo frames might reduce performance. You can test a connection for the use of jumbo
frames using a form of the following command:

$ ping -M do -c 3 -s 8900 my.remote.pal.com (use your target url, of course)
$ ping -M do -c 3 -s 8900 192.168.1.105

The -M do option prevents ping from segmenting the packet.
The -c 3 option causes the ping to be sent three times. (The count number is arbitrary.)
The -s 8900 causes ping to add 8900 bytes of padding to the normal ping packet.21

Important: Not all Linux distributions support jumbo frames.

19 For reasons beyond the scope of this chapter, the MTU size for TCPIP definitions is sometimes set to eight bytes
less than the true MTU size; 1492 instead of 1500, 8992 instead of 9000. The size of 9000 (or 8992) bytes for a
jumbo frame is not rigidly defined, but is the most common maximum size used.

20 This includes all the routers and switches between your system and the target system.
21 There is nothing special about the number 8900. It is less than the 8992 or 9000 that can be used for the MTU and

allows extra space for the ping packet content.
Chapter 7. LANs 139

If the ping fails (typically by hanging until it times out) then your connection does not support
jumbo frames. As best we understand, generally available Internet connections do not
support jumbo frames.

The examples in this book use the non-jumbo MTU size of 1492 because the LAN
environments capable of handling jumbo frames are not routinely available.

7.6.2 Investigating lan performance problems

We have observed that reported lan performance problems sometimes can be traced to
external elements, such as incorrect routing specifications, external lan performance,
incorrect routing for multiple lan adapters, and so forth. These are not zPDT issues and the
zPDT support and development teams cannot be expected to debug such problems.

Before reporting a lan performance problem to your zPDT supplier you should attempt to
isolate the problem. Is it really zPDT or is it due to an external element? One way to do this is
to create a small private network, as shown in Figure 7-8 on page 137 (without the optional
external lan connection). This simple configuration has no external routing and should have
no unexpected performance issues if the ethtool parameters and /or jumbo frames22
discussed earlier are used.

Measure performance (ftp speed, for example) within this simple configuration to determine if
there is still a problem.

7.7 Wireless connections

Wireless connections can be used by Linux TCP/IP or by OSA. Consider the following details:

� Linux typically sees a wireless connection as device ath0, wlan0, or eth0. The find_io
command lists a wireless interface along with Ethernet interfaces and associates a CHPID
with it. (The CHPID address for a wireless adapter is normally F8.) You can then use this
CHPID number as the path parameter for defining an awsosa interface.

� We cannot provide a cookbook for activating your wireless link for Linux, but you need to
have stable Linux wireless operation before trying to extend it to zPDT usage.

� We have noticed that the more recent Linux distributions provide much more convenient
wireless setup than earlier Linux distributions.

7.8 Telnet to z/OS UNIX system services

If you elect to install the tunnel connection as described earlier you can connect from the
base Linux to z/OS by both Telnet (in line mode) or by a TN3270e client such as x3270.
Using the IP addresses from our examples, the Linux commands are shown here:

$ x3270 10.1.1.2 & (to start a TN3270 session via z/OS TCP/IP)
$ telnet 10.1.1.2 1023 (line-mode Telnet session via z/OS TCP/IP)

The 1023 parameter in the telnet command specifies the port number that the AD-CD UNIX
System Services uses for Telnet connections. This port number (1023) is not standard, and
probably applies only to the AD-CD z/OS system.

22 Assuming your complete LAN infrastructure and your Linux distribution support jumbo frames.
140 IBM zPDT Reference and Guide

7.9 Choices

Which 3270 connection mode is better? If only simple 3270 connections are needed (and not
more than 32 sessions are needed), then the use of basic aws3274 connections (shown in
scenario 1) is better. This is simpler to set up and does not require OSA or z/OS TCP/IP to be
configured or started.

Which CHPID mode should you use for OSA connectivity? QDIO mode has many benefits for
TCP/IP use on a larger z System; it reduces the z System workload and provides automatic
sharing of the adapter across multiple LPARs. These considerations do not fully apply to a
zPDT system. The following points are relevant:

� QDIO operation offloads some processing from the zPDT CP to the Linux processor. The
offloading is not as much as on a larger machine, but it helps. It also reduces the number
of z System instructions needed to maintain LAN I/O operation. In informal operation we
noticed that FTP performance was about 20% faster with QDIO than with LCS.

� QDIO operation is only for TCP/IP; it does not handle SNA.

� QDIO can provide VSWITCH, IPv6, and Enterprise Extension connections.

� Non-QDIO operation can mix TCP/IP and SNA (or handle just SNA or just TCP/IP).
However, SNA operation with zPDT is not supported.

� Suitable non-QDIO (LCS) devices have been defined in z/OS AD-CD systems. (These are
the CTCs starting at address E20.)

� The required OAT table is automatically updated when QDIO is used. The default OAT
table is probably satisfactory for non-QDIO TCP/IP usage and might be satisfactory for
SNA usage (although SNA is not supported). The OSA/SF utility functions are used (if
needed) to manipulate the OATs. Unfortunately, the OSA/SF functions are being migrated
to HMC controls in current z System machines and the HMC functions are not available
for zPDT.

Other than these points, there is no practical difference between using QDIO or non-QDIO on
a zPDT system. In particular, the user at a TN3270 TSO session cannot detect the difference.
Normal TCP/IP functions, such as FTP and Telnet, do not detect any differences. If you are
using recent AD-CD systems (or another z/OS package with OSA devices defined), we
suggest you use QDIO mode because this represents the future direction for z/OS LAN
operations.

7.10 Useful z/OS networking commands

The following commands might be useful when working with LAN devices:

� z/OS operator commands:

D U,,,dddd,nn dddd = address, nn = number to display
D M=DEV(dddd) provides path status
D M=CHP display all CHPIDs defined to z/OS
D IOS,MIH display current MIH values
SETIOS MIH,DEV=E201,TIME=00:30 example of setting MIH

� TSO commands:

NETSTAT DEV display all devices and links
NETSTAT HOME display home address
NETSTAT GATE display gateway addresses
NETSTAT CONN display connection status
Chapter 7. LANs 141

TRACERTE ipaddress
PING ipaddress
(Issue ALLOC DD(SYSTCPT) DA(*) before TRACERTE or PING for more data.)

� VTAM commands:

V NET,ACT,ID=LCL701 vary local 3270 active to VTAM
D NET,MAJNODES display major nodes
D NET,ID=xxxxxx,E display information about specific node
D NET,TRL list the TRLEs
D NET,TRL,TRLE=OSATRL1E data about specific TRLE
V NET,ID=OSATRL,ACT activate a major node
V NET,ID=OSATRL,INACT
V NET,ID=ISTTRL,ACT,UPDATE=ALL remove inactive TRLEs from TRL list

Note that the name LCL701 in the sample V NET command is the VTAM name of the terminal.
This name is not related to the LUname specified in the zPDT devmap. A 3270 session has
both an aws3274 LUname (specified in the zPDT devmap) and a VTAM name (specified in
VTAMLST). Also, MVS operator consoles are not specified in VTAM and have no VTAM
name. This terminology is unfortunate because the aws3274 LUname (used to link a
TN3270e session to an aws3274 definition) is not necessarily the same LUname associated
with a VTAM operation.

Also, note that zPDT does not support the VMAC function from z/OS. The only virtual mac
supported is generated on z/VM with the layer-2 vswitch.

7.11 Non-QDIO operation

When using the non-QDIO interface to the emulated OSA-Express2 function, the key
parameters might look like the following example:

Devmap

[manager]
name awsosa 22 --path=F0 --pathtype=OSE
device E20 osa osa --unitadd=0
device E21 osa osa --unitadd=1

z/OS TCP/IP Profile

DEVICE LCS1 LCS E20 AUTORESTART
LINK ETH1 ETHERNET 0 LCS1
HOME 192.168.1.81 ETH1
...
BEGINRoutes
; Destination Subnet Mask FirstHop Link Size
ROUTE 192.168.1.0 255.255.255.0 = ETH1 MTU 1492
ROUTE DEFAULT 192.168.1.1 ETH1 MTU DEFAULTSIZE
ENDRoutes
...
START LCS1

This example assumes that z/OS contains an appropriate CTC or OSA definition for
addresses E20 and E21.23 Different addresses can be used, of course, but they must match
the IODF in your z/OS system. The HOME address and ROUTE statements in the example
are just examples, of course. The GATEWAY statements could be used instead of the
142 IBM zPDT Reference and Guide

ROUTE statements. The --unitadd parameter is used in the devmap because the default
OSA unit addresses24 would be 20 and 21 (using the two low-order digits of the device
number) and we want unit addresses 0 and 1.25

7.12 More complete QDIO example

We used the find_io command to determine that our Ethernet adapter was eth0, and that it
was assigned as CHPID F0. The tunnel interface is usually CHPID A0. We elected to use the
QDIO mode for both OSA interfaces. We used the following devmap:

[system]
memory 3600m
3270port 3270
processors 2

[manager]
name aws3274 0002
device 0700 3279 3274 mstcon
device 0701 3279 3274 tso
device 0702 3279 3274 tso
device 0703 3279 3274 tso

[manager]
name awsckd 0001
device 0A80 3390 3990 /z/ZCRES1
device 0A81 3390 3990 /z/ZCRES2
device 0A82 3390 3990 /z/ZCSYS1
device 0A83 3390 3990 /z/ZCUSS1
device 0A84 3390 3990 /z/ZCPRD1
device 0A85 3390 3990 /z/ZCPRD2
device 0A86 3390 3990 /z/ZCPRD3
device 0A95 3390 3990 /z/WORK01 #local volumes, not part of AD
device 0A96 3390 3990 /z/WORK02

[manager]
name awsosa 0013 --path=A0 --pathtype=OSD --tunnel_intf=y
device 400 osa osa
device 401 osa osa
device 402 osa osa

[manager]
name awsosa 0003 --path=F0 --pathtype=OSD
device 404 osa osa
device 405 osa osa
device 406 osa osa

[manager]
name awstape 004
device 581 3490 3490

23 LAN operation in LCS mode can use CTC definitions in the z/OS IODF. This is a carryover from earlier LAN
implementations.

24 This unit address is the (emulated) hardware address within the (emulated) OSA control unit. It is not the device
number (“address” in common terminology).

25 The default OAT used by OSA requires unit addresses 0 and 1 for TCP/IP when in OSE mode.
Chapter 7. LANs 143

[manager]
name awscmd 1000
device 580 3490 3490

The following lines are in VTAMLST member OSATRL1, pointed to by the parameters in
ATTCONxx:

OSATRE1 VBUILD TYPE=TRL
OSATRL1E TRLE LNCTL=MPC,READ=(0400),WRITE=(0401),DATAPATH=(0402), X
 PORTNAME=PORTA,MPCLEVEL=QDIO
OSATRL2E TRLE LNCTL=MPC,READ=(0404),WRITE=(0405),DATAPATH=(0406), X
 PORTNAME=PORTB,MPCLEVEL=QDIO

We used the following TCP/IP profile in z/OS:

ARPAGE 5

DATASETPREFIX TCPIP

AUTOLOG 5
 FTPD JOBNAME FTPD1 ; FTP Server
 PORTMAP ; Portmap Server
ENDAUTOLOG

PORT
 7 UDP MISCSERV ; Miscellaneous Server
 (there follows a long list of standar service ports)

SACONFIG DISABLED

DEVICE PORTA MPCIPA
LINK ETH1 IPAQENET PORTA
HOME 10.1.1.2 ETH1

DEVICE PORTB MPCIPA
LINK ETH2 IPAQENET PORTB
HOME 192.168.1.82

BEGINRoutes
; Destination Subnet Mask First Hop Link Size
ROUTE 192.168.1.0 255.255.255.0 = ETH2 MTU 1492
ROUTE 10.0.0.0 255.0.0.0 = ETH1 MTU 1492
ROUTE DEFAULT 192.168.1.1 ETH1 MTU DEFAULTSIZE
ENDRoutes

ITRACE OFF

IPCONFIG NODATAGRAMFWD

TCPCONFIG RESTRICTLOWPORTS

UDPCONFIG RESTRICTLOWPORTS

START PORTA
START PORTB
144 IBM zPDT Reference and Guide

The AD-CD z/OS systems (up to the time of writing) use the DEVICE, LINK, HOME operands
in the TCPIP PROFILE definition. The same are used in this book in order to match the
AD-CD systems. You can use the newer INTERFACE parameters if you chose, for example:

 OLD NEW
DEVICE PORTA MPCIPA INTERFACE ETH1
LINK ETH1 IPAQENET PORTA DEFINE IPAQENET
HOME 10.1.1.2 ETH1 IPADDR 10.1.1.2/24

PORTNAME PORTA
....
START PORTA START ETH1

7.13 VLAN usage

z/PDT OSA emulation supports VLAN usage provided the underlying Linux NIC card or NIC
driver do not impose their own VLAN control. VLAN works properly in the systems IBM uses
for tests, but may not work in all systems. Unfortunately, documentation at this level of detail
may be difficult to find for some NIC adapters and drivers.

7.14 Shared Ethernet adapters

Scenario 4 uses a single “real” Ethernet adapter (eth0, in the base Linux) for both Linux and
z/OS. Some users find this confusing. Figure 7-9 illustrates this usage in more detail.

Figure 7-9 Shared Ethernet Adapter

The awsosa device manager is independent from Linux TCP/IP, although it can use the same
Ethernet adapter. Up to 16 TCP/IP stacks (in z/OS or z/VM) can connect to the awsosa
device manager and each of these TCP/IP stacks defines its own IP address. The
configuration shown in Figure 7-9 would have two IP addresses, one for Linux TCP/IP and
one for z/OS TCP/IP. These IP addresses are unrelated. External routing rules typically
require that both IP addresses be on the same subnet, but this rule is external to zPDT.

Linux

Linux TCP/IP

System z

Device managers

ftp user Telnet TN3270e Browser Telnet

PC system

TN3270e ftp

Different IP
addresses

One Ethernet port
for everything

awsosa

TSO

ftp Telnet server

ftp

TCP/IPIOS

aws3274

x3270

VTAM
Chapter 7. LANs 145

The system in this illustration provides two paths for a user to connect to z/OS TSO. One path
is through Linux TCP/IP and the aws3274 device manager. The other path is through the
awsosa device manager and z/OS TCP/IP.

There is no connection between OSA and the base Linux in this situation. It is a Linux design
oddity that the two users of the physical Ethernet interface cannot communicate with each
other.

Figure 7-10 extends this concept to include a tunnel connection between z/OS and the base
Linux.

Figure 7-10 Shared Ethernet and tunnel

The tunnel environment allows connections between Linux TCP/IP applications (such as
FTP, Telnet, and x3270) and OSA TCP/IP applications26 (such as FTP, the TN3270e server
that is part of z/OS communications manager, and so forth). The tunnel environment creates
a virtual adapter similar to an Ethernet adapter. This virtual adapter is assigned its own IP
address on both the Linux and OSA side, as illustrated in Figure 7-10.

We suggest that the tunnel IP addresses (for the Linux side and the OSA side) be on a
subnet separate from any other IP addresses involved in the system. We emphasize this in
our documentation by using 10.x.x.x addresses for the tunnel and 192.168.x.x addresses for
other connections.

7.15 Base Linux LAN notes

Messages, such as the following example, might be seen in the Linux log (with a dmesg
command):

SFW2-INext-DROP-DEFLT IN=tap0 OUT= MAC= SRC=10.1.1.1

26 A more exact statement references TCP/IP applications within an operating system that is using the
OSA-Express2 interface, of course. In our examples, this is z/OS applications (such as the TN3270e server) using
the z/OS TCP/IP stack that interfaces to OSA-Express2. We abbreviate this detail by simply referring to an OSA
application.

Linux TCP/IP

Linux

System z

ftp user Telnet Browser Telnet

PC system

ftp

Different IP
addresses

One Ethernet port

TSO ftp

IOS

VTAM

ftp

Telnet server

aws3274

x3270

TCP/IP

Tunnel

Device managersawsosaawsosa
Note that only a
single Ethernet
port is used here.
146 IBM zPDT Reference and Guide

These messages are related to the use of multicasting when looking for a DNS name server.
The source address indicated in the message (10.1.1.1) is associated with a tunnel (tap)
device in typical zPDT operation and is unlikely to find a DNS server.

These messages do no harm. If your Linux system has no need to find a DNS server (on any
LAN interface), you can eliminate the messages by editing /etc/host.conf and changing
multi on to multi off.

7.16 Ethernet SNA

IBM does not support Ethernet SNA operation for zPDT. This means that problems or defects
are not addressed by IBM if you attempt to use SNA operation over Ethernet. However, we
are aware that some zPDT users have worked with Ethernet SNA successfully. If you attempt
this, consider the following information:

� The default OAT for the awsOSA device manager in LCS mode has TCP/IP at unit
addresses 0 and 1. It has SNA only at unit address 2.

� There is no OSAD device (for use with OSA/SF) in current z/OS AD-CD systems.

� While SNA performance may be acceptable for simple testing, it is unlikely to be
acceptable for heavier usage.

7.17 NFS and SMB

There is no explicit zPDT support for NFS or SMB-mounted DASD,27 although NFS-mounted
DASD has been used during zPDT development. SMB has not been used and the usefulness
of SMB with zPDT is unknown.

In principle, the use of LAN-accessed files is transparent to zPDT, which sees them as
ordinary Linux files. In practice, the user must take care with shared files. The --shared option
with the awsckd device manager causes it to emulate the operation of reserve CCWs. This
locking protects some z/OS metadata (such as VTOC and catalog updates) but does not, in
general, protect shared data.

27 SMB is also know as SAMBA.
Chapter 7. LANs 147

148 IBM zPDT Reference and Guide

Chapter 8. zPDT licenses

To use zPDT you must have a machine-readable zPDT license and an appropriate z System
serial number for your zPDT z System. If you wish to install a z/OS AD-CD system, you also
need a different license to decrypt the distributed IPL volumes. The licenses are provided
through a USB token or through a remote license server. The serial number is provided in
similar ways. See Figure 2-1 on page 8 for examples of zPDT USB tokens.

The installation and use of these licenses, servers, and serial numbers can appear complex
because there are a variety of paths and techniques that might be used. The complexity is
lessened if you take a few minutes to understand the basic concepts involved.

8.1 Basic Concepts

The most basic zPDT configuration (a “local” zPDT configuration) consists of a single USB
token connected to the user’s PC. The token provides the licenses (zPDT and AD-CD) and
also provides the z System serial number to be used, as shown in Figure 8-1.

Figure 8-1 Basic zPDT licenses and serial number

8

License
server

zPDT

Local UIM
function

token

PC running Linux

local UIM database

serial number
from token

The token serial number is
stored in the local UIM database
the first time the zPDT system
is started.

Serial number
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 149

z System machines have unique serial numbers, allowing software to identify the machine
and LPAR, and the zPDT function that manages serial numbers is known as UIM. UIM stands
for Unique Identifier Manager. A z System serial number might be important for some users,
although many zPDT users simply accept whatever number zPDT assigns and do not worry
about it.1 In this basic, local configuration the zPDT license server and the UIM function are
both “part of zPDT” and are not visible as separate elements. We illustrate them separately to
emphasize the functions they perform.

The UIM data is used only when zPDT is started. The zPDT license is accessed every few
minutes while zPDT is operational. Please note that multiple zPDT licenses are required if
zPDT is to use multiple CPs. A typical token might contain three zPDT licenses and one
AD-CD license.2

The general concept for remote license servers is shown in Figure 8-2. The figure also
illustrates that multiple instances of zPDT can be used in a Linux client system.

Figure 8-2 General concept of remote license and UIM servers

The obvious difference between a “local” zPDT system and a remote server configuration is
that the local machine(s) (the clients) do not have a token installed. The license server can
provide licenses for multiple clients, limited only by the number of zPDT licenses it has
available to provide to clients. The heartbeat is a message between zPDT instances and the
zPDT license that, among other things, contains a time stamp.

8.1.1 Types of tokens and licenses

There are multiple types of zPDT licenses, tokens, and license servers, and this can be
confusing. There are two general categories of zPDT users:

� Independent Software Vendors (ISVs).

� Commercial customers (zD&T, formerly known as RD&T).

1 Some operating systems verify that the “IPLed” machine has the same serial number as the machine that last used
that copy of the operating system and may react differently if there is a mismatch. Some software products are
licensed by machine serial number, making it important for users of these products.

2 The AD-CD license is used only to decrypt the z/OS IPL volumes when installing them. It is not needed for routine
zPDT or z/OS use. There is no need for more than one AD-CD license.

License
Server

UIM
server
UIM

zPDT
instance

zPDT
instance

UIM

Local UIM repository

serial numbers

zPDT licenses and heartbeat

token(s)
(or a software

TCP/IP

UIM repository

server

Server Client

based license)
150 IBM zPDT Reference and Guide

The license control mechanisms (tokens and “software-only” licenses) are from Gemalto
N.V., under the general product name of SafeNet. There are two SafeNet product families
which we refer to as Gen1 and Gen2:3

� Gen1 tokens have been used since zPDT first became available and comprise both 1090
and 1091 tokens for ISV and zD&T customers. Gen1 tokens are an older product family.

� Gen2 licenses are newer and are available in both hardware (token) form and a
software-only (no token needed) form. We use the term Gen2-SL for the software-only
version and Gen2-HL for the hardware (token) version when we need to distinguish the
two options. The Gen2 tokens are available in three different physical formats. Gen2
tokens (and software) will eventually supplant the Gen1 family. At the time of writing,
zPDT uses Gen2-SL licenses only for zD&T customers and is not yet using Gen2-HL
tokens. However, the zPDT GA7 and later software supports all forms of Gen1, Gen2-SL,
and Gen2-HL.

There are several types of tokens or equivalents available:

� Gen1 token type 1090 is used by ISVs (and also by many IBM employees). These tokens
have 1, 2, or 3 zPDT licenses. The token can be used in a local configuration or in remote
license servers. The zPDT licenses in 1090 tokens allow the use of z/VM and Coupling
Facilities.

� Gen1 token type 1091 is used by zD&T customers. The typical 1091 tokens have 1, 2, or
3 zPDT licenses, but higher capacity versions are available with up to 100+ licenses. The
tokens can be used in a local configuration or in remote license servers. An optional
feature of the zD&T license allows the use of z/VM and Coupling Facilities.

� Gen2-SL licenses are software-only (no token) licenses available for use only on remote
servers. They cannot be used in a “local” configuration. At the time of writing, Gen2-SL is
available only for zD&T customers.

� Gen2-HL tokens can contain either ISV or zD&T licenses, depending on how they are
initialized by the zPDT provider. The 1090 and 1091 terms are not used for these tokens.

All the tokens (and the Gen2-SL equivalent) normally contain AD-CD licenses. Multiple
tokens (of the same type) can be used in both local systems and remote servers to provide
more licenses. A single zPDT instance cannot use more then eight zPDT licenses
(corresponding to eight CPs.) Regardless of the type of token (or software license) used, an
operational zPDT system identifies itself as an IBM type 1090 system.

A table summarizing tokens and licenses is included in “Introduction” on page 1.

8.2 Using a local zPDT system

Preparing to use a local zPDT system (that is, one with a token connected to a USB port and
not connected to any remote zPDT server) depends on the type of token involved. Key points
are these:

� If you are using a Gen1 token (a 1090 or 1091 token) simply connect it to a USB port. The
token must have been activated with a current license. If the token does not contain a
current license see “Gen1 token activation and renewal” on page 169 for more
information.

� If you are using a Gen2 hardware token, you must install the Gen2 client software. This is
described in “Gen2 client configuration” on page 155. After this is installed, simply connect

3 These are informal names we use. Some earlier zPDT documentation referred to Gen1 tokens as SHK tokens and
Gen2 licenses as LDK licenses. See Gemalto materials on the Web for more formal product information.
Chapter 8. zPDT licenses 151

the Gen2 token to a USB port. The Gen2 token must contain licenses appropriate to your
zPDT package; that is, licenses for zD&T operation or ISV operation.

� If you are always using the same single token, this is all that is needed. zPDT constructs a
z System serial number from the token and stores it in the local UIM database. If you use
multiple tokens. or different tokens at different times, you should read “UIM usage details”
on page 152.

With this basic operation you can ignore the remainder of this chapter.

8.3 UIM usage details

Each zPDT instance is assigned a unique serial number, either from a local token or by a UIM
server. Every zPDT instance4 has an LPAR ID assigned to it.5 The combination of serial
number and LPAR ID becomes part of the CPUID. The CPUID is the information provided by
the z System instruction Store CPU ID (STIDP).

The rules for using a zPDT license are straight-forward. The rules for zPDT serial numbers
are more complex. The goal is to always have the same unique serial number for a given
zPDT instance. The following general rules are used to determine the z System serial number
for a zPDT instance. The term UIM serial number6 means a serial number generated and
assigned by a UIM server. Important details include the following:

� If a single local token is used (and no previous serial has been assigned):

– The first zPDT startup will take the z System serial number from the token. This serial
number is then written in the local UIM database.

– Subsequent zPDT startups use the same token.
• Or, if a different token is used, the uimreset -l command must be issued first

(before zPDT is started). This erases the existing serial number in the local UIM
database, allowing a new token (with a different serial number) to be used.

• Or, the RANDOM parameter may be specified by using the clientconfig
command. This allows any token to be used while retaining a fixed serial number in
the local UIM database. (This option must be selected while there is no serial
number in the local UIM database; thereafter, the first token used establishes the
serial number.)

� If a single local token is used and if a UIM serial number is present in the local UIM
database (due to a previous connection to a UIM server) then the UIM serial number is
used and the local token serial number is ignored. (The local token still supplies the zPDT
license unless a remote license server is configured.)

� If multiple local tokens are present (and no previous serial number exists in the local UIM
database) the serial number of one of the tokens is accepted and stored in the client UIM
database. This stored serial number is used subsequently, without further reference to the
serial numbers of the tokens. In this case the RANDOM option must have been specified
by using the clientconfig command.

4 The “instance” terminology is typically used when multiple concurrent zPDT copies (“instances”) used on a base
Linux.

5 This is not the same as the LPAR name. The LPAR name is the same as the Linux userid that started the zPDT
instance. zPDT instances have some of the characteristics of an LPAR, but full LPAR functionality is not provided
by zPDT.

6 The term random serial number is also used for serial numbers created by a UIM server. After such a serial number
is generated and assigned to a client, it is used consistently. The “random” term applies only to the initial
generation of a serial number by a UIM server and indicates the serial is not related to a specific token serial
number. You, a client user, cannot create the “random” number.
152 IBM zPDT Reference and Guide

� If the client is configured for a remote UIM server the following information applies:

– If no serial number is known for the client system, the UIM server generates a serial
number and sends it to the client UIM database.7

– If the local client UIM database already contains a valid serial number that does not
conflict with another client’s serial number (as stored in the UIM server database) that
serial number is used.

If the client serial number (in the client UIM database) conflicts with a serial number in
the UIM server database, the client operation fails. In this case, the client system may
use the uimreset -l command to remove the serial number in the local UIM database.

� If the client changes to a local configuration after previously using a remote configuration
the previously assigned serial number (from the remote server and stored in the local UIM
database) is used. The local token serial number is ignored.

Once assigned a serial number, the number is not changed even if the corresponding token
(or software license) numbers are changed. The user must take actions to allow a serial
number change.8 A user cannot assign an arbitrary serial number; the serial numbers are
generated by UIM or taken from a token.

8.4 General zPDT client and server details

A license or UIM server is accessed (via TCP/IP) by a client PC running zPDT and the zPDT
operational license is supplied this way.9 The client machine does not have a token and does
not need a USB port. A client machine must have access to the license server as long as
zPDT is operational on the client. Likewise, the client machine has access to a UIM server
that supplies consistent serial numbers for the z System CPs.

All zPDT systems have remote client functionality10 but, by default, it is not configured for
remote operation. If a token is installed zPDT operates normally (with a local token). If a
remote client function is configured, zPDT attempts to connect to remote servers to obtain a
zPDT license and serial number.

The owner of the client machine must do some minor configuration work to enable clients to
use remote license servers and UIM servers. Before enabling client access to a remote
server the server networking environment (IP address, domain name, firewall controls,
appropriate tokens for the server) must be arranged.

The remote license and UIM servers are normally on a single remote system. However, the
two servers could be on separate machines. A UIM server and/or a Gen1 server could be on
the same machine as the client, but this is unusual and would still be considered remote
servers in the context described here. All the following text assumes that the license server
and the UIM server are on the same remote machine. A Gen2-SL server cannot be present
on a PC running zPDT.

Additional details include the following:

� The TCP/IP port number for a Gen1 license server is 9450, for a Gen2 license server it is
1947, and for a UIM server it is 9451. These port numbers are not configurable;11 if you

7 This is noted as a “random” serial number. In this case “random” simply means it is not related to a token serial
number. Do not try to generalize the “random” terminology.

8 This involves the uimreset command.
9 The licenses needed to decrypt z/OS IPL volumes are also provided by the server.
10 The client interface for a remote Gen2 server was added with zPDT release GA6.3.
11 This is a change for zPDT GA7.
Chapter 8. zPDT licenses 153

must change one of these port numbers you should contact your zPDT provider for
assistance. Firewalls between the servers and clients must allow the required IP and port
access.

� After a zPDT instance is started (on a client) the license access must be maintained for
the life of the zPDT instance. If the access is dropped, the zPDT instance stops. (If the
access is recovered, zPDT starts again.)

� The servers must be identified by resolvable domain names or by IP addresses. This is
easy if they have direct, fixed IP address or domain names. It is not easy if
DHCP-assigned addresses or NAT functions or VLAN networks are involved. Skilled
network planning is required for any but the simplest environments.

� If a Gen1 server is not specified, it defaults to localhost.

� A client machine may be changed to a stand-alone machine (with token) by changing a
configuration file, and vice versa.

� In normal operation, a client machine always has the same z System serial number. This
number, once assigned via a local or remote function, might not be related to any physical
token number.

� Any license or UIM configuration changes should be made when zPDT is not operational.

8.5 Client Installation and configuration for remote servers

All client functions (for both licenses and UIM functions) are included and installed by the
zPDT installation package. Whether the remote functions are used depends on configuration
options. The basic zPDT client installation process is described earlier in Chapter 5., “zPDT
installation” on page 97.

8.5.1 Gen1 client configuration

After a normal zPDT installation, Gen1 client operation is normally configured with the
clientconfig command.12 It produces a display similar to this (assuming you are not using
Gen2 licenses):

Gen1 ContactServer........localhost (default localhost)
Gen1 BackupServer..........__________________ (default is blank)
UIM ContactServer.........__________________ (default is blank)
UIM Local Serial Random..._ (y or blank)
Factory Reset............._ (Enter “y” to reset file)

Parameters are changed by simply overtyping them. Remember that configurations for two
separate functions (Gen1 license server and UIM server) are specified here. The general
rules are these:

� The Gen1 ContactServer should be localhost (to specify that no remote Gen1 license
server is being used)13 or the address (IP address or domain address) of a Gen1 license
server. One of these options must be specified. The default localhost parameter causes
zPDT to operate with a local token.

� The Gen1 BackupServer field is used only if there is a second Gen1 license server.

� If the Gen1 ContactServer is not localhost (that is, a remote Gen1 license server is being
used), the UIM ContactServer is assumed to be at the same IP address as the license

12 You must operate as root to use the clientconfig command, or enable use of the clientconfig_authority function.
13 If the GEN1 ContactServer field is blank, it is internally defaulted to localhost.
154 IBM zPDT Reference and Guide

server. The UIM ContactServer value is specified only if a UIM server is used and is on a
different server machine than the license server. In a simple local environment, with no
UIM server, this line must be blank. If used, the hostname could be localhost (if a UIM
server is running on the client machine) or the address (IP or domain name) of a remote
UIM server.

� The UIM Local Serial Random specification is needed if multiple tokens are used on a
local client or if different tokens are used at different times. This parameter is either “y” or
left blank. This option is not effective if a serial number is present in the local UIM
database. In this case, the existing serial number must be removed with a uimreset -l
command.

� If the Factory Reset option is set to “y”, all other parameters are ignored and the
configuration file is restored to the original values shipped with zPDT.

Changes to the configuration file are not dynamic. They take effect only when zPDT is
started. Note that earlier versions of clientconfig provided a field for a UIM server port
number; this option is no longer relevant.

An alternate method for setting the clientconfig values for Gen1 and Gen2 licenses is with the
clientconfig_cli command, described in 4.1.26, “The clientconfig_cli command” on
page 66. This alternate method provides a command-line interface that could be used within
a Linux script.

The actual server information is in file /usr/z1090/bin/sntlconfig.xml. The general syntax
is as follows:

<SentinelConfiguration>
 <SentinelKeys>
 <ContactServer>localhost</ContactServer>
 <ServerPort>9540</ServerPort>
 <Protocol>SP_TCP_PROTOCOL</Protocol>
 </SentinelKeys>
 <UniqueIdentificationManager>
 <UIMContactServer></UIMContactServer>
 <UIMServerPort></UIMServerPort>
 <UIMProtocol></UIMProtocol>
 <UIMLocalSerialMethod></UIMLocalSerialMethod>
 </UniqueIdentificationManager>
</SentinelConfiguration>

We strongly suggest that you do not attempt to edit this file directly. Directly editing XML files
is very prone to errors and debugging can be difficult.

8.5.2 Gen2 client configuration

You must complete two steps for Gen2 client operation: (1) activate the Gen2 software, and
(2) configure your specific server information.

After the normal zPDT package is installed the Gen2 client can be activated. The Gen2 client
(and server) require a 32-bit version of the Linux glibc library and the client installation
process automatically accesses several Internet sites to obtain this if the library is not already
present in your Linux system. Be certain you have a working Internet connection before
starting the following process if you are doubtful about the presence of this library in your
Linux system.14 After checking your Internet connectivity, and working as root, issue the
following command /usr/z1090/bin/gen2_init.
Chapter 8. zPDT licenses 155

The resulting display depends on your Linux distribution, but might look like the following if an
internet search is required to find the library:

/usr/z1090/bin/gen2_init
 Script for installing 32-bit compatibility packages for 64-bit Linux.
 Copyright (C) 2013, SafeNet, Inc. All rights reserved.
Linux OS Flavor - SuSe!
Installing 32-bit libraries...
Executing command : zypper install glibc-32bit ..
Loading repository data...
Reading installed packages...
Resolving package dependencies...
The following package is going to be upgraded:
 glibc-32bit
1 package to upgrade.
Overall download size: 1.1 MiB. Already cached: 0 B. After the operation, additional
388.0 B will
be used.
Continue? [y/n/? shows all options] (y): y <==== reply y
Retrieving package glibc-32bit-2.19-19.1.x86_64 (1/1),1.1 MiB (3.4 MiB unpacked)
Retrieving delta: ./x86_64/glibc-32bit-2.19-17.1_19.1.x86_64.drpm, 156.2 KiB
Retrieving: glibc-32bit-2.19-17.1_19.1.x86_64.drpm
...[done]
Applying delta: ./glibc-32bit-2.19-17.1_19.1.x86_64.drpm
...................................[done]
Checking for file conflicts:
...[done]
(1/1) Installing: glibc-32bit-2.19-19.1
..[done]
There are some running programs that might use files deleted by recent upgrade. You may
wish to check and restart some of them. Run 'zypper ps -s' to list these programs.
Completed ...!
Installing LDK client side license manager
Preparing... ################################# [100%]
Updating / installing...
 1:aksusbd-7.40-1 ################################# [100%]
redirecting to systemctl start aksusbd.service
..Done.

This setup is done only once. Thereafter the Gen2 client is started automatically when the
client Linux system is booted.

Next you must tell your client where to find the server, using the clientconfig command. If
this command finds the Gen2 client software active, it displays additional lines:

Gen2 Server...............________________ (must be specified)
Gen2 Backup Server........________________ (optional)
Gen1 ContactServer........localhost (used if Gen2 server fails))
Gen1 BackupServer..........__________________
UIM ContactServer.........__________________
UIM Local Serial Random..._ (y or blank)
Factory Reset............._ (Enter “y” to reset file)

You must specify at least one server. You can specify both Gen2 and Gen1 servers, but this
would be unusual.

14 Your base Linux might already have glibc-32bit (or a similar library) installed; it so, you can allow the attempt to
fetch it through the Internet to fail. If glibc-32bit is not already installed on your base Linux and if you cannot
connect to the Internet (perhaps due to firewalls) then you must obtain and install glibc-32bit in some other way. Be
aware that the exact name of the library may vary. The Gen1 functions (client and server) will not operate without
this library.
156 IBM zPDT Reference and Guide

The specification order for a UIM server is (1) the UIM ContactServer, (2) the Gen2 Server,
then (3) the Gen1 server. The first specified address in this order is used. Backup license
server addresses are not considered for a UIM server.

If the Gen1 ContactServer field is left blank, it internally defaults to localhost.

An alternate method for setting the clientconfig values for Gen2 licenses is with the
clientconfig_cli command, described in “The clientconfig_cli command” on page 66, or the
ldk_server_config command, described on “The ldk_server_config command” on
page 73.15 These alternate methods provide a command-line interface that could be used
within a Linux script.

The query_license command can be used with Gen2 clients and servers and is shown in
“Managing the Gen2 server” on page 159. It is useful for verifying your setup and connectivity
with the license manager.

SafeNet provides a browser-based Sentinel Admin Control Center that could be used to
configure the Gen2 functions. We strongly recommend you use the clientconfig and
serverconfig commands rather than this browser interface.

8.5.3 Client UIM configuration

The client UIM information is held in /usr/z1090/uim/uimclient.db. In unusual error situations
you might be advised to delete this file. This will cause the UIM function to obtain or create a
new serial number (working with your local token or with a remote UIM server) when zPDT is
next started.

The configuration details are:

� For a Gen1 license server, the license server configuration (with the clientconfig
command) also configures access to the UIM server. By default, the UIM server is
assumed to be at the same IP address as the Gen1 server and uses a port number that is
one greater than the Gen1 server port number. This is described in more detail in “Gen1
client configuration” on page 154.

� For a Gen2 server you can use the clientconfig command and set the UIM
ContactServer and UIM PortNumber variables.

� The clientconfig_cli line command may be used instead of the interactive clientconfig
function for these actions.

� The following command clears the serial number in the local UIM database [-l] or in both
the remote and local UIM database [-r].

uimreset [-l] [-r] (must be run by root)

� The uimcheck command should be used if there is any question about the state of the
serial number on a zPDT machine. Any user may issue this command.

$ uimcheck (may be used by any userid)

8.6 Server installation and configuration

Both the Gen1 license server and UIM server are included in the base zPDT package. The
license server runs as a daemon and is automatically started when Linux is booted. (This is
true even for local token use.)

15 The ldk_server_config command is deprecated; the clientconfig_cli is the recommended command.
Chapter 8. zPDT licenses 157

The Gen2 license server (packaged with the standard UIM server) is not part of the standard
zPDT package. A package with these two components is available as a separate deliverable.
(As mentioned earlier, at the time of writing the Gen2-SL offering is only for zD&T customers.)

8.6.1 UIM server

The UIM server used with a Gen1 server is automatically installed when installing zPDT. The
separate package providing a Gen2 license server also contains a UIM server. The UIM
server is the same in both cases.

Once installed, the remote UIM server must initially be started manually; thereafter it is
automatically managed by cron. It must not run as root. It runs under a normal Linux userid
and places its database in the home directory of that userid. It also places small log files in
the home directory. For this reason, the same Linux userid (not root) should always be used
to run the UIM server.

Two commands are associated with running the UIM server:

$ uimserverstart (start the UIM server)
$ uimserverstop (stop the UIM server)

The uimserverstart command, in addition to starting the server, places entries in the Linux
cron files such that the UIM server is restarted automatically (after 10 minutes) if it fails. It is
also started automatically during a Linux reboot. The uimserverstop command stops the
server and removes these cron entries.

No other configuration is needed for the UIM server. You must not edit the UIM database file
file that is created in a subdirectory of the home directory of the userid running the UIM
server; this will corrupt the file due to checksums that are within it.

If you must change the UIM server port number you should consult your zPDT provider for
guidance.

8.6.2 Gen1 License server

The Gen1 license server is part of the standard zPDT package and is installed as if you were
installing a zPDT client. It is activated by the actions of the two token “driver” components that
are part of zPDT installation.

One (or more) 1090 or 1091 tokens must be installed in the license server machine before it
can be used. The license server configuration file is located in:

/opt/safenet-sentinel/common_files/sentinel_key_server/sntlconfigsrvr.xml

This file typically does not require any additional configuration. If you must change this file
you would then need to restart the server:

cd /opt/safenet_sentinel/common_files/sentinel_keys_server
./loadserv restart

Several security functions may be specified in the sntlconfigsrve.xml file.
158 IBM zPDT Reference and Guide

8.6.3 Gen2 License server

Several steps are involved in preparing a Gen2 license server. The license server (and the
associated UIM server) are supplied in a file with a name similar to that shown in the following
command. Place this file in a convenient directory and, working as root, execute the file:16

./zPDT_LS-1-8.51.08.x86_64 (Use your correct file name)

The installation process might cause an Internet search for the latest version of the 32-bit
glibc library, as described in “Gen2 client configuration” on page 155. Both the Gen2 license
server and a UIM server are installed.17

If you are installing software-only licenses (no Gen2 tokens) the next step is to obtain
software licenses that can be “served” by the license server. Working as root, issue the
following command:

/opt/IBM/LDK/request_license

This will create a file named <hostname>_xxxxxx.zip in root’s home directory, where
<hostname> is your Linux system’s name and xxxxxx is a timestamp. This file contains a
fingerprint of the license server. You must send this file to the appropriate zPDT licensing
facility (as identified by your zPDT contract). In return you will receive an “update_zip” file
containing the number and type of licenses your server can supply to clients. Receive this file
into a convenient directory and install it as follows:

/opt/IBM/LDK/update_license <hostname>_xxxxxx_update.zip

Then restart the license server daemon with one of the following commands:

systemctl restart aksusbd.service (used with newer Linux distributions)
service aksusbd restart (used with older Linux distributions)

This completes the Gen2 license server installation. Remember that you also must start the
UIM server on your server system. You should consider security controls for your Gen2 server
as described in “Security” on page 165.

The update_zip file that conveys zPDT licenses to the server also contains AD-CD decryption
licenses that become available to the client systems.

Managing the Gen2 server
Once a Gen2 server is installed, the serverconfig and query_license commands may be
used to help manage it. The serverconfig command, used on the Linux system that is
running the Gen2 server, produces the following display:

Allow Server Access _ (enter Y or N)
Enable Access Log _ (enter Y or N)

16 The file must be executable. This might require a chmod u+x operation. Also, the exact file name may change
slightly to match newer levels of zPDT.

17 The Gen2 server is installed in /opt/IBM instead of the traditional /user/z1090/bin that has been used for other
zPDT modules.

Important: You cannot reinstall a Gen2 license file. You cannot “start all over” with it. If
you need to start all over, you must run the request_license function again and obtain a
new update_license file from your zPDT provider.

The Gen2 software license server is tied to the physical PC whose “fingerprint” was used
when obtaining the licenses. It cannot be moved. It cannot be relocated in a virtual
environment.
Chapter 8. zPDT licenses 159

enter=”Process, save-quit” ESC=”quit”
Rules will be loaded from /opt/IBM/LDK/rules.ini on save-quit

The first option, with an “N” operand, disables the Gen2 server without stopping it. When
disabled, it does not respond to client zPDT heartbeats (effectively stopping the clients) and
does not issue new licenses. A “Y” operand starts normal server operation again. The Log
option causes the server to create an internal log that is automatically trimmed every 60 days.
(The default is no log.) You can obtain a copy of the current log with the display_gen2_acclog
command.

The serverconfig command forces rereading of the Gen2 server security file, as described in
“Security” on page 165.

The query_license command can be used on both Gen2 clients and Gen2 servers. (It does
not handle Gen1 servers or clients.) For a client, it displays the details about the licenses in
use and the server being used. For a server, it displays the inventory of licenses available
and information about all current users.

$ query_license
The following key is available:
HASP-SL key=id=367116869417668380 feature(s):
FID Feature Name Expiration Logins MaxLogins
334- ADCD License Thu Jan 22, 2017 19:59:59 0 1
335- CPU License Thu Jan 22, 2017 19:59:59 1 12

Host Information: Falcon 42 localhost
Z109x detected. Only client sessions will be shown
KeyID FID FeatureName Address user Machine Login
3671.. 335 CPU license 9.56.111.222 ibmsys1 bill.privx.ibm.com Wed Feb 15

The syntax is slightly different than in other parts of zPDT. “Logons” and “MaxLogins” refer to
licenses, not users. A user with 3 CPs would have 3 “logins.” In this example the server has
12 zPDT CPU licenses, and only one of these is being used. Information about the user’s
machine is shown.

If you want to move your Gen2 server to a different PC, you must contact your zPDT provider.
They have a process for deleting the current Gen2 licenses and enabling a move to a new
server. You cannot simply move the server files (or the hard disk containing the files) to a
different machine.

The man files for a Gen2 license server are located in /opt/man/IBM/LDK/man1. The access
them you need to include this directory in the man path for root. For example:

export MANPATH=$MANPATH:/opt/man/IBM/LDK

8.7 General Notes

Do not run Z1090_token_update or Z1091_token_update from a client zPDT machine when
using a remote license server. The utility cannot affect tokens or licenses in the remote
license server, but will attempt to access a token in the local PC. You may run the utility in the
Gen1 license server, to update the tokens in the server.18

18 Normal guidelines for SercureUpdateUtility or Z1090_token_update (or Z1091_token_update) apply. For example,
only one token should be connected to the PC when you use these commands.
160 IBM zPDT Reference and Guide

The administrator of a license server is responsible for ensuring the license keys do not
expire while in use. The situation in which multiple tokens are installed (in a Gen1 license
server) and the licenses in one token expire can be complex. Clients see license expiration
warning messages starting a month before the license expires. However, if multiple tokens
are present it is not predictable which token will furnish the license (or licenses) for a zPDT
startup.

The license expiration date displayed by the token command (in a client machine) may not
reflect the effective expiration date of all the active tokens in a license server. The token
command (when zPDT is running) produces additional information, for example:

$ token
CPU 0, zPDTA (1090) available and working. Serial 6186(0x182A)
 Lic=88570(0x159FA) EXP=4/15/2017 SHK

In this example, the zPDT license was obtained from token 0x159FA (decimal 88570) and the
CP serial number used by zPDT is 0x182A. There is no indication of whether a license server
and UIM server are being used. Because the serial number and license number are different,
we know that at some point the serial number was obtained from a UIM server. However, it is
possible that the token is in the local client but that the serial number previously obtained from
a UIM server is being used. This fulfills the goal of using a consistent serial number once it is
assigned. (The “SHK” indicates that a Gen1 token is being used.)

Starting all over
If you decide to “start all over” and reinstall your zPDT system, there might be a problem with
serial numbers. If you use the same single local token that was used previously, zPDT will
obtain the same serial number from it. If you use a remote license server and deleted any
previous references there (with a uimreset -r command) (or if you have multiple local
tokens) your new zPDT installation might not have the same serial number as the previous
setup. If you do not care about z System serial numbers then this is not a problem. If you do
care about z System serial numbers (due to software contracts or software sensitivity) this
can be a problem. The only certain way to obtain the same z System serial number is to use
the same single local token.

You cannot “start all over” when installing a Gen2 software-only licenses.

8.7.1 Firewalls

You (or your networking people) must manage any firewalls involved with remote servers and
ensure that intermediate routers can find your server and your client.19 If you operate through
firewalls you must ensure that the relevant port numbers can pass through the firewalls.
There are many management techniques for firewalls, depending on what product is being
used. Many Linux system respond to iptables commands, such as:

iptables -I INPUT -p tcp - d port 1947 -j ACCEPT
iptables -I INPUT -p tcp - d port 9450 -j ACCEPT
iptables -I INPUT -p tcp - d port 9451 -j ACCEPT

8.7.2 Disk and Linux changes

Changing the Linux disk (HDD) might change the identifier that is part of the identification
used by UIM. You may need to reset the local serial number (uimreset -l) or the remote
serial number (uimreset -r) after changing the hard disk.

19 As we have stressed before in this book, skilled networking help may be required to implement remote access to
zPDT and/or the use of remote license servers.
Chapter 8. zPDT licenses 161

Upgrading to a new Linux kernel might change the identification used by UIM. You may need
to reset the local serial number (uimreset -l) or the remote serial number (uimreset -r). If
this does not solve the problem, delete the UIM database at /usr/z1090/uim.

8.7.3 Backup servers

Backup license servers can be specified for Gen1 and Gen2 license servers. Backup servers
cannot be specified for UIM servers.

8.7.4 Cloning zPDT

If you clone a zPDT system, you must delete the files in /usr/z1090/uim on the new system.
This is because the UUID of the new system differs from that of the old system. zPDT will
build new uim files when the new system is started.

8.7.5 Removing functions

All Gen1 server functions (and associated UIM) can be removed by simply removing zPDT on
that server. For example, either of the following methods can be used:

z1090-1-7-49.28.x86_64 --removeall (note two dashes)

The Gen2 client function can be removed with this command:

/usr/z1090/bin/gen2_init --remove (note the two dashes)

A Gen2 server is a package that can be removed with a command such as the following
(where the exact file name should match whatever name was used to install the Gen2 server
function):

./zPDT_LS-1.8.51.10-x86_64 --remove

This also automatically removes the UIM server that was associated with the Gen2 server.

Do not use rpm commands to remove these functions; it will not remove all the necessary
modules.

8.7.6 License expiration notification

Starting 30 days before a zPDT license expires, zPDT issues a message three times per day
in the Linux command window that was used to start zPDT. (That is, the command window
where the awsstart command was issued.) This Linux window is often not visible to zPDT
users or administrators, and a second notification option is available.

If you define environmental variable ZPDT_EXP_EMAIL to specify an e-mail address, a
zPDT license expiration notification is sent to this address every 8 hours. For example:

$ export ZPDT_EXP_EMAIL=bill@my.isp.com

The environmental variable should be set from the Linux command window that starts zPDT
and issued before zPDT is started. For this method to work your Linux mail command must
be properly configured and operational. This is often not a trivial task, and varies so much that
we cannot advise you how to do it. You can test your mail command as follows:

$ mail -s “My test message” bill@my.isp.com (use a correct address!)
This is my test message, Line 1
162 IBM zPDT Reference and Guide

(cntl-D) (Use cntl-D to end your message)

If this sequence is successful in sending the test message to your specified address, you
have mail working correctly.

8.8 Scenarios

Common scenarios are as follows:

� License search order
� Local to remote server
� Temporarily switch from server to local
� Remote server to local
� Using zPDT on the license/UIM server (Gen1)
� Switch tokens (Gen1)

License search order
zPDT attempts to obtain a license from a Gen2 server (if one is configured), then attempts to
obtain a license from a Gen1 server (if one is configured), and lastly attempts to obtain a
license from a local token. There is a considerable timeout involved in trying to access the
two servers, and depending on this automatic “fall through” search is not reasonable for
normal operation. The --localtoken option of the awsstart command simply “short circuits”
any attempts to use remote license servers and UIM servers.

Local to remote server
Consider zPDT systems A and B (each using a different PC for zPDT with Gen1 tokens).
System A has a zPDT token with serial number 12345.

� The system A owner installs token 12345 in his PC and starts zPDT. When this is done,
serial 12345 is recorded in the local system A UIM database. (This assumes there was no
prior conflicting information in the local UIM database.) System A may be used in this
configuration indefinitely (until the token license expires), with no reference to remote
license or UIM servers.

� The token is taken from system A for some reason, and the system A owner now wants to
use remote license and UIM servers. With zPDT not running and working as root, the
owner configures a client as described in “Gen1 client configuration” on page 154 or
“Gen2 client configuration” on page 155.

� The remote UIM server sees that system A has serial number 12345 recorded in its local
UIM database. The server checks whether this serial number is assigned to any other
system. If there are no conflicts, the server records serial 12345 in the server database as
belonging to system A. Separately, the remote license manager serves a zPDT license,
but the serial number of that token (if one is used) is not relevant.

Thus far, system A has retained a consistent serial number (12345) when switching from a
local token to remote license/UIM servers. It will have this serial number every time zPDT20 is
used.

� Someone has given token 12345 to the owner of system B. The owner installs and uses it
locally (with no connection to the remote license/UIM servers). At this point both A and B
have the same zPDT serial number, although they cannot both be active at the same time
since there is only one token. There is no way to avoid this.

20 To be more precise, we should say “every time this same zPDT instance is used.” Multiple zPDT instances (on the
same machine) must run under different Linux userids. The serial number for each of the instances will use the
“LPAR” portion of the serial number to differentiate the instances.
Chapter 8. zPDT licenses 163

� If the system B owner then connects to the license/UIM servers, the UIM server sees
serial 12345 in B’s local UIM database and terminates the zPDT instance because 12345
has already been assigned to system A.

� The problem is that A and B both want to use the same serial number (12345) and the
UIM server has it assigned to A. There are two ways to resolve this:

– The system B owner can issue uimreset -l to clear the serial number in the local UIM
database. The owner can then connect to the remote servers and receive a new
random serial number.

– Or, the system A owner can issue uimreset -r to clear his serial number from both the
local and remote UIM databases. The next time system A zPDT starts, it will request a
new random serial number from the server. System B can then use the 12345 token
and serial number.

Temporarily switch from server to local
Assume a notebook zPDT system is normally used with remote license and UIM servers. You
want to take the system home overnight, and the servers cannot be accessed from home. If a
token is available, you can start zPDT with the local option:

$ awsstart devmap_name --localtoken

In this case there is no need to use the clientconfig command to change the configuration
file. The --localtoken option overrides the configuration file. The user must, of course, have
a token to supply a license. In this case the serial number stored in the local UIM database is
used and the serial number of the temporary token is ignored. In effect, the random option
(from the clientconfig command) is automatically in effect. If the remote UIM server is not
available (which is likely in this scenario) there will be a short pause before the serial number
in the local UIM database is used. (A warning is issued when this is done.)

Remote server to local
Assume a system owner has been using a remote license server and UIM server. To change
to a Gen1 local token, the owner should use the clientconfig command to change the
LicenseContactServer value to localhost. zPDT looks in the local UIM database for a serial
number. If one is present, it is used. If the local UIM database does not exist (or if the
uimreset -l command was used), the serial number of the local token is placed in the local
UIM database and then used by zPDT.

Using zPDT on the license/UIM server (Gen1)
Suppose we want to run zPDT on the same machine that is running the Gen1 license server
and UIM servers. In this case we use the clientconfig command to specify License
ContactServer as localhost and UIM ContactServer as localhost. This has the following
effects:

� The presence of the UIMContactServer stanza means that a UIM server must be available
on the indicated system (which is localhost in this example). Before starting zPDT on this
system the user must issue a uimserverstart command.

Give some thought to the Linux userid that issues the uimserverstart command. The
same userid must always be used for this command because the UIM server database is
created in the home directory of this Linux userid.

� No special setup is needed for the license server. Any zPDT system (meaning the
SafeNet server that is installed with zPDT) can act as a Gen1 license server.

Such combined operation (server and client) is not possible with an Gen2 server.
164 IBM zPDT Reference and Guide

Switch tokens (Gen1)
In this case, token 12345 has been used with a newly installed zPDT system. When zPDT is
first started, this serial number is written in the local UIM database. If a different token is used
on a subsequent startup, the zPDT startup fails. A uimreset -l command is needed to
remove serial 12345 from the UIM database; after that, a new token may be used.

However, if the serial number in the local UIM database was assigned by a UIM server (or if
the RANDOM parameter was used with the clientconfig command) then any local token
may be used; the operational serial number will be taken from the local UIM database.

The important point is that zPDT recognizes the difference between a UIM server-assigned
serial number (which can be used with any token) and a locally installed serial number (taken
from a local token). A locally installed serial number must match the token being used (unless
the RANDOM option is set).

Change from single token to multiple tokens (Gen1)
Assume you start with a single token and later, for some reason, want to randomly use one of
several tokens you possess. You are not using a remote license server. To do this, take the
following steps:

1. Issue a uimreset -l command. (This requires root authority.)

2. Use the clientconfig command and set the UIM Local Serial Random value to Y. (This
also requires root authority.)

3. Select the token containing the serial number you want assigned to your zPDT system.
Start zPDT using this token.

4. Thereafter you should be able to start zPDT with any token or with multiple tokens
attached. The serial number you selected in step 3 is used, regardless of which token you
are currently using.

8.8.1 Display serial number assignments

You can display the zPDT serial number assignments by pointing your browser to your
remote UIM server (http://uimserveraddress:9451). The display is similar to what is shown
in Table 8-1; this function is not valid for a local UIM database.

Table 8-1 Processor serial numbers on zPDT UIM server ibmsys1@xxx-510.ibm.com

8.8.2 Security

If the license managers are used only from a single subnet, or a well-designed VPN, then
security is not a major issue. If the license servers are accessed from the general Internet
then security can be a significant issue. For example, your license server could provide zPDT
licenses to someone completely external to your enterprise.

Serial Host UUID Year Day

2099 d2x2.pok.ibm.com E6D96D01-493E-11CB-AD29-B8F42F7F8461 2016 009

Important: License and UIM server port numbers (9450 and 9451 for Gen1, 1947 and
9451) must not be used by any other IP function on your subnet. A port number conflict
can cause zPDT failure.
Chapter 8. zPDT licenses 165

Gen1 server
The SafeNet Gen1 license server can have three lists of IP addresses (or domain names or
ranges of IP addresses):

� The Authorized User List determines which systems can use a web interface to manage
the SafeNet license server. The default list contains only one address: 127.0.0.1, which is
the local host and is always allowed whether specified or not.

� The Allowed Site Address list determines which clients may obtain zPDT licenses from
this server. If the list is empty (the default) then any client may obtain a license from this
server.

� The Blocked Site Address list specifies client addresses that may not obtain a license from
this server. If the list is empty (the default) then no client addresses are blocked.

Each list is limited to 32 entries. These lists are in the sntlconfigsrve.xml file in
/opt/safenet_sentinel/common_files/sentinel_keys_server/ and may be edited there.
They can also be managed by pointing a browser to port 7002 on the machine running the
SafeNet license server, for example:

http://localhost:7002 (if working on the server machine)

If a different machine is used to access the server web interface, then the IP address of that
machine must be listed in the Authorized User List. We suggest using the browser method, if
possible, because directly editing the XML file is prone to introducing syntax errors that might
cause the license server to fail. List entries might take any of the following forms:

127.0.0.1 (a simple IP address)
my.local.domain.com (a domain name)
10.1.1.2-10.3.255.254 (a range of IP addresses)

If using the browser interface, be certain to click the update button on the web page after
keying updates to the lists. You must then restart the SafeNet server:

cd /opt/safenet_sentinel/common_files/sentinel_keys_server
./loadserv restart

These lists provide one way to secure use of a zPDT license server. Other methods, such as
restricted router interfaces or non-routable IP addresses, might be more appropriate.

Gen2 server
The Gen2 server inspects file /opt/IBM/LDK/rules.ini for security rules. This is a simple text
file that you manage with your favorite Linux text editor. The file should contain lines like the
following:

allow=192.168.1.*
allow=my.favorite.domain
deny=all

The Gen2 server reads from the top of the file and stops when the client (who is requesting a
license) matches a rule. The first rule that matches the client’s IP address is used. Later rules
are not inspected. The Gen2 server automatically appends allow=all to the bottom of the list.

In the above example any client on subnet 192.168.1 or the subnet (or host) resolved by
my.favorite.domain can obtain a license from the server (if any are available, of course).
Everyone else is rejected.

You can change the rules.ini file while the server is running. To do this, issue:

serverconfig -u
166 IBM zPDT Reference and Guide

to cause the Gen2 server to reload the rules file.

8.8.3 Resetting UIM

You can usually remove the local UIM serial number with the uimreset -l command. You
can remove both the local UIM serial number and corresponding entries in a remote UIM
server database with the uimreset -r command.

If the local UIM database is corrupted, the uimreset command might fail. In this rare case you
can delete the files in the /usr/z1090/uim directory. However, the previous UIM serial for that
client will still be provided by a UIM server (if the client is configured for connection to the
server, of course). In this case, the uimreset -r command may be used to remove the
relevant entry from the UIM server database if that is desired.

The UIM server can be reinitialized by removing everything in the UIMserver subdirectory in
the home directory of the Linux userid that runs the UIM server. This is a drastic step, of
course, and should not be done in normal operational environments. If the UIMserver
directory is cleared, some of the entries will be restored by future client connections in which
the client still has previous UIM local data.

The client configuration file may be restored to its original state (which does not reference any
remote servers) by using the Factory Reset option with the clientconfig command.

8.8.4 SafeNet module restarts

There are two SafeNet functions involved with zPDT. One is the license servers (Gen1 or
Gen2) that we discuss in this chapter. The other is a daemon (“token driver”) that
communicates with Gen1 tokens (in USB ports). After zPDT is installed, both these functions
are started automatically when Linux is booted. Changing the license server files requires
restarting the license server. It should not be necessary to restart the token driver except in
unusual situations.

The commands to restart the Gen1 USB token daemon are:

$ su (change to root)
cd /opt/safenet_sentinel/common_files/sentinel_usb_daemon
./load_daemon.sh restart (or status or stop or start)

The commands to restart the Gen1 server are:

cd /opt/safenet_sentinel/common_files/sentinel_keys_server
./loadserv restart (or status or stop or start)

The commands to restart the Gen2 server are:

systemctl restart aksusbd.service (newer Linux distributions)
service aksusbd restart (older Linux distributions)

8.8.5 Gen2 servers

License renewal is done by obtaining a new update file from your zPDT provider and using
the following command:

Receive this file into a convenient directory and install it as follows:

/opt/IBM/LDK/update_license <hostname>_xxxxxx_update.zip
Chapter 8. zPDT licenses 167

This is the same command that was used to install the initial Gen2 license enablement file.

8.9 Server search

A backup Gen1 and/or Gen2 server may be specified for a client. The servers are searched
for an appropriate license in the order listed. There is no coordination among multiple servers;
each must have available licenses (additional tokens for Gen1 or software entitlements for
Gen2-SL) in order to serve them to clients. This means that the customer installation has
purchased additional licenses or has split the available licenses among multiple servers in
some way.

A zPDT client searches all available license sources until it finds the license(s) it requires.
Gen2 servers (if any are defined for the client) are searched first, followed by Gen1 servers (if
any are defined for the client), followed by locally installed USB tokens.21 If remote license
servers are defined for a client but cannot be accessed by a TCP/IP connection there will be
delays while the access attempts time out before another license server is tried. If no Gen1
ContactServer is specified with the clientconfig command, zPDT internally specifies localhost
for this operand. This means that, if all other license searches fail, zPDT looks for a local
Gen1 token in the client system.

Remember that a Gen2-SL license server cannot be simply shifted to another PC. Moving a
Gen2-SL license server function to a different PC involves multiple interactions with your
zPDT license provider to ensure that the license entitlement information is removed from the
old server and that a new license entitlement update_zip file is created for the new server.

8.10 Numbers

Consider a remote license server (Gen1 or Gen2) with five zPDT licenses it can allocate to
clients. A single client could request all five licenses by coding processors 5 in his devmap.
Or five different clients could each request a single license. Or there could be a combination
of clients that consume the five available licenses. When a client zPDT ends (with the
awsstop command) the licenses used by that client are available to other clients. At any given
instant no more than five zPDT client licenses, representing five CPs, can be allocated to
clients.22

Over time, many client zPDT systems might connect to this remote license server, provided
that not more than five licenses are allocated at any one time. Each of the many clients will
have a unique serial number provided by the remote UIM server. Thus we might have a case
where five licenses are available but ten serial numbers are associated with these five
licenses. This distinction between numbers of licenses and numbers of serial numbers might
be important for some ISV software license situations.23

A single zPDT instance cannot have more than eight CPs, each requiring a zPDT license.24
(IBM contract conditions might have a smaller limit.) Assuming that the maximum of eight
could be used, the devmap for an instance could request eight licenses from the remote
server.25 In our example, only five licenses are available and the client would receive all five
licenses (if no one else is using any licenses). Perhaps the intention of the customer is to
21 The --localtoken operand of the awsstart command simply shortens this search to go to USB access immediately.
22 We ignore differences for zAAPs, zIIPs, CPs in this discussion.
23 This is a technical discussion. There might be additional contractual limitations to the number of users (people) or

clients (zPDT systems) involved.
24 A PC running zPDT must have more cores than the number of zPDT CPs requested by the devmap. In this

discussion we assume the client has sufficient cores to meet this requirement.
168 IBM zPDT Reference and Guide

share his five licenses among several development systems. There is no technical way to
prevent a single user (that is, a single zPDT system) from using all the licenses (up to eight, if
that many are available). Management control is needed to ensure “fair” sharing of zPDT
licenses in situations where a limited number of licenses are serving multiple remote clients.

8.11 Gen1 token activation and renewal

zPDT Gen1 tokens must be activated (that is, have an initial zPDT license installed). This
might be already done by your zPDT supplier. zPDT token updates are needed to extend the
license date (or to replace a corrupted license).

The following text is relevant to basic Gen1 token users. More complex zPDT license
management topics, including Gen2 tokens26 and software-only licenses, are covered in
other sections of this chapter.

8.11.1 Overview of Gen1 token updates

ISV zPDT (1090 tokens) and zD&T (1091 tokens) have different procedures for obtaining
token licenses.

� ISV zPDT (1090 tokens):

– Use the Z1090_token_update command to generate a request (.req) file based on the
token.

– Send the .req file to your zPDT license provider. (This could be IBM Resource Link for
IBM employees, or an external provider for ISVs.)

– The zPDT provider returns, usually by e-mail, a .zip file that is installed with the
Z1090_token_update command. Do not unzip the file.

� zD&T (1091 tokens)

– The license provider is aware of token license expiration dates (or a request is made to
the license provider). No .req file is involved.

– The provider sends a .zip file that is installed with the Z1091_token_update command.
Do not unzip the file.

Older zPDT releases, prior to zPDT GA5, used the SecureUpdateUtility command to obtain
.req files or install .upw files. This utility is still provided and instructions for use appear in
earlier zPDT documentation.

The first installation of the additional licenses in the .zip file (with the Z1090_token_update or
Z1091_token_update command) can take longer than you might expect -- perhaps up to a
minute; be patient when using the command. Remember to unplug a token for 10 - 15
seconds after updating it. This causes Linux to read the new license that you just installed.

25 Starting with zPDT GA8, zIIP processors do not require a license. However, they still count toward the maximum
of eight CPs in a zPDT instance and toward the number of cores needed.

Note: At the time of writing, the material in this section (about token license renewals)
applies primarily to users of 1090 tokens. The mechanisms for 1091 (zD&T) token
renewals may differ; consult your zD&T supplier for details.

26 Gen2 tokens are a new family of tokens. zPDT GA7 accepts these tokens, but IBM is not (at the time of writing)
distributing them yet. The older tokens (“Gen1 tokens”), with 1090 and 1091 names, will continue to be supported.
Chapter 8. zPDT licenses 169

Multiple tokens
Only one token can be present in a system that is updating the token and zPDT can not be
active when applying the update. You can create a request file (.req) while zPDT is active,
provided that only one token is present. If you have multiple tokens you must update them
one at a time. You must be logged in to the machine that has the USB token connected in
order to do these activities; you cannot update a token in a remote server.

8.11.2 Gen1 token license update details (1090 tokens)

A USB hardware key (token) is normally valid for a year from the time it was last activated.27
Activation (and lease renewal) might be handled by your zPDT service provider (such as an
IBM Business Partner) or by using IBM Resource Link in some cases.

Copy the information that is printed on the token tag (illustrated in Figure 8-3) attached to the
USB hardware key.28 Store this information in a safe place because this information is
needed to activate a replacement token if replacement becomes necessary.

Figure 8-3 USB hardware key tag

An IBM Resource Link profile (user ID) is needed.29 This can be an IBM employee profile or a
PWD-approved profile for other users. An IBM employee can go to the following link and
follow the Register for an IBM ID link (in the upper right part of the page):

http://www.ibm.com/servers/resourcelink

After this preliminary work, the token license can be activated, renewed, or have the lease
date extended (these are all provided in the same way):

1. Connect the USB hardware key to your zPDT system, using any USB port. (You must
have the zPDT software installed already.) Only one token can be connected while doing
this task.

2. Working as root, create a request file using Z1090_token_update,or Z1091_token_update:

(log in with a normal zPDT userid, such as ibmsys1)
$ su (change to root)
cd /usr/z1090/bin (must be in this directory)
Z1090_token_update -r myrequest

Important: The following details are primarily for IBM internal users. For other users, your
zPDT supplier will probably handle these details for you.

27 This was true at the time of writing. Future availability plans may manage this in a different way.
28 1091 tokens do not have this tag. They have a serial number engraved on the back, but it is not used for the

process described here.
29 For various historical reasons, some IBM employees have customer Resource Link userids. These userids will not

see the required links in Resource Link.

N79

Canada iCES/NMB-003 IBM-1090-XXX(A)
Class/Classe A FCC class A - see manual

(11S)PN/SN: 15r7312 YH1102055123
|| |||| ||||| || || |||| || ||||

Type 1090-L01
S/N 02-1180C

11S number: use last 6
digits (055123 in this example)

MTSN number:
(02-1180C in this example)
170 IBM zPDT Reference and Guide

http://www.ibm.com/servers/resourcelink

exit (leave root)

3. If necessary, move this request file to the computer used to access Resource Link and log
on to Resource Link. (Your request file name has .req added as the name extension.)

4. On Resource Link, navigate to Tools → 1090 Support → Date Extension and enter the
data from your hardware key tag. Use the last six digits of the 11S field. The serial number
(the MTSN field) can be entered with or without the dash; it is not case sensitive. Enter the
file name of your request file. Finally, click Submit.

5. Resource Link creates one or two files and send them to you by e-mail. Receive the files
and move them to your zPDT machine, if necessary. The file names are the same name
that you sent, but with .upw and .zip as the name extensions.

6. Apply30 the file to the Gen1 token:

Z1090_token_update -u myrequest.zip or
Z1091_token_update -u myrequest.zip

After the update is successfully applied, unplug the USB hardware key. Wait 10 - 15 seconds
and then reconnect the hardware key. It is now ready for routine zPDT operation.

8.12 Summary of relevant zPDT commands and files

The following zPDT commands are related to licenses, tokens, license servers, UIM, and UIM
servers:

� clientconfig - configures both Gen1 and Gen2 client systems.

– clientconfig_cli - provides a non-interactive interface to Gen1 clients to configure a
connection to a Gen1 license server.

� clientconfig_authority - provides path to use clientconfig from a non-root Linux userid.

� query_license - displays license usage for Gen2 servers or clients.

� SecureUpdateUtility - an older utility for updating Gen1 tokens, now deprecated.

� SecureUpdate_authority - provides a path to use SecureUpdateUtility,
Z1090_token_update, or Z1091_taken_update commands from a non-root userid via the
zPDTSecureUpdate command.

� serverconfig - provides controls for Gen2 license servers.

– serverconfig_cli - provides a non-interactive interface to serverconfig functions.

� token - displays details of the operational licenses in a client or local zPDT instance.

� uimcheck - displays (for a client or local zPDT system) the current UIM status.

� uimreset - removes the z System serial number from the local and/or remote UIM
database.

� uimserverstart and uimserverstop - start and stop a remote UIM server.

� Z1090_token_update and Z1091_token_update - update licenses in Gen1 tokens.

� zPDTSecureUpdate - a more convenient way to update Gen1 tokens.

The following files and executables are relevant:

� /usr/z1090/bin/gen2_init - is executed to install a Gen2 client or server.

30 Remember that SecureUpdateUtility is used with zPDT releases prior to GA5, and Z1090_token_update is used
with zPDT release GA5 and later.
Chapter 8. zPDT licenses 171

� /opt/IBM/LDK/request_license - is used to produce a fingerprint file that is required to
obtain software-only Gen2 licenses.

� /opt/IBM/LDK/update_license - is used to install software-only Gen2 licenses in the
license server.

8.13 License manager glossary

The license server and UIM server functions can be confusing. The glossary presented here
can help some of the key terms.

� SafeNet: The product line that provides the USB keys and the software that directly
supports them. This includes the USB driver, the license manager, and a web interface to
the license manager. The owning company is now Gemalto N.V., but the SafeNet name is
used with the products described in this chapter.

� SafeNet Sentinel Key: The USB “token” from the SafeNet product line. This token
provides zPDT license information. However, a “key” can also be a software-only function
of a Gen2 server or a Gen2 hardware token.

� Token: Another term for a SafeNet Sentinel Key. The terms token, key, SafeNet key, and
Sentinel key are used interchangeably.

� License: A logical function that enables one z System CP for a zPDT system. Multiple CPs
require multiple licenses. The token functions (or the software-only license function of a
Gen2 server) provide licenses.

� License Monitor: A web browser interface that displays information about Sentinel Keys
and clients using them. A Gen1 monitor is accessed at port 7002 on a Linux system
running a Gen1 license server, but might not be functional on recent Linux distributions.
The equivalent Gen2 information can be obtained with a query_license command.

� Heartbeat: The periodic accessing by zPDT of the license (or licenses) managed by a
license server. If the heartbeat is missed, the zPDT license is revoked.

� Time Cheat: The Sentinel Key records the current date and time each time the key is
accessed. If the Linux system clock contains a time earlier that the last recorded time in
the token, the license is unusable.

� Token Serial Number: The license information in the token contains a unique serial
number assigned by IBM. This serial number might be used as the basis for the z System
CP serial number in some cases.

� UIM or Unique Identifier Manager: This is a server (or local function of zPDT) that helps
maintain unique enterprise-wide z System serial numbers for zPDT systems. The license
server and the UIM server (or local function) are separate but parallel functions.

� Identification: A serial number and instance number, as stored by the z System STIDP
instruction. (The instance number is similar to an LPAR number on a larger z System.)

� Serial Number: A value in the range of 1 and 65535 (four hex digits). The serial number is
assigned by the UIM function to the base Linux and used by zPDT to provide the z System
serial number.

� Instance Number: A number in the range of 1 and 255 assigned to each zPDT instance on
a base Linux machine. Each zPDT instance must operate under a different Linux userid
and the instance number is assigned to the userid. The instance number is used in the
same manner as the LPAR number on a larger z System.

� UIM Database: A file containing UIM information. The files are not directly editable. There
are two types of databases. One exists in every Linux zPDT machine, and the other exists
in a UIM server (if this is used). The local database (on a zPDT client) is at this location:
172 IBM zPDT Reference and Guide

/usr/z1090/uim/uimclient.db

� Random serial number: This is a serial number that is unique, but is not tied to a token
serial number. The UIM server generates and assigns these numbers. A random serial
number can be used (by zPDT) with a license from any token. (Do not take the “random”
word too literally; in this case it means that tokens with serial numbers other than the one
used to set the UIM serial number may be used. It does not mean you can select a
random number.)

� UUID: This is a universally unique identifier. It is obtained from the Intel-compatible
machine BIOS. It is used to uniquely associate a UIM serial number with a particular
machine.

� Checksum: A value in the UIM database that may be used to verify the authenticity of the
data in the database. (It also prevents you from directly editing the database information.)

� Rational License Server: This has no relation to zPDT license servers. It provides
controlled access to multiple IBM software products and might be used in conjunction with
zPDT license servers.
Chapter 8. zPDT licenses 173

174 IBM zPDT Reference and Guide

Chapter 9. Other System z Operating
Systems

This document is primarily concerned with z/OS. However, other System z Operating
Systems may be used under zPDT.

9.1 z/VSE

z/VSE is available (for licensed users) as an AD-CD download for zPDT. We suggest using
this download instead of installing z/VSE from the standard DVD distribution media. Consult
your z/PDT provider for information about licensing and downloading.

At the time of writing, z/VSE was not available for 1091 users.

9.2 Linux for z Systems

Linux for z Systems is not an IBM product and is not distributed by IBM. Several Linux
products and distributions can be considered under the generic name of “Linux for System z”
or “Linux for z Systems.” There is no equivalent of an AD-CD available for Linux for z
Systems.

Red Hat Enterprise Linux for System z, SUSE Linux Enterprise Server for System z, and
Ubuntu (for z systems) have been used with the current release of zPDT.

Various installation procedures may be used for these products; we do not attempt to cover
the techniques in this document. We do note that the zPDT ipl_dvd command may be
relevant if your Linux for System z distribution is on a DVD and the DVD is configured for
direct installation.

A minor restriction exists with SLES distributions prior to SLES 12 Service Pack 1. Earlier
distributions will recognize the emulated crypto adapter (in zPDT GA6) as a level CEX4S
adapter instead of a level CEX5S adapter.

9

© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 175

9.3 z/VM

z/VM is available in an AD-CD format for zPDT users whose license includes access to z/VM.
For ISV zPDT users (1090 tokens) a separate license agreement may be required. For zD&T
users a separately priced feature may be required. Consult your zPDT supplier for additional
information.

The zPDT GA8 release corresponds to IBM z14 architecture. Specific service levels of z/VM
are required for z14:

� For z/VM 6.4:

– The z/VM 6.4 base must be dated on or after August 25, 2017, or

– APAR VM65942 or APAR VM66071 must be applied to earlier copies of z/VM 6.4.

� z/VM 6.3 cannot be installed on a z14 system. Previously installed z/VM 6.3 systems can
be used on a z14 if APARS VM65942, VM65921, and VM65922 are installed before
attempting to use the system on a z14 machine.

� Older z/VM releases (before z/VM 6.3) are not considered here.

At the time of writing, a new AD-CD z/VM 6.4 system became available. The details in this
chapter are based on this AD-CD z/VM 6.4 system and there may be minor differences with
earlier or later releases.

9.4 Installing the AD-CD z/VM 6.4 system

The z/VM 6.4 AD-CD uses fewer volumes than earlier AD-CD z/VM releases, due to more
effective use of 3390-9 volume space. Six 3390-9 volumes are used for the AD-CD z/VM 6.4
system.1 These volumes are as follows:

M01RES 640RL1 M01P01 M01S01 M01W01 VMCOM1

As with other AD-CD System z volumes, these volumes are packaged as compressed (gzip)
files and are expanded into usable form with a gunzip command, as in this example:

$ gunzip -c m01res.gz > /z/M01RES

This example assumes that the gz file is in the current Linux directory and the target directory
for the volume is in the /z directory. These locations are arbitrary and you must adapt the
commands to your situation. AD-CD distribution files often have lowercase names
(m01res.gz). Our examples expand the files with uppercase names (M01RES), but this is not
required. We do it to help distinguish emulated 3390 volumes in the directory.

At the time of writing, the IPL volume is not encrypted and is installed with a simple gunzip
command. Later z/VM releases might have an encrypted IPL volume similar to that used with
current AD-CD z/OS releases.

1 The AD-CD z/VM 6.4 might presented with additional paging volumes with volsers such as M01P02, M01P03, and
so forth. These (if they exist) are optional. If z/VM finds them present, they will be used as additional paging
volumes.

Important: The AD-CD 6.4 z/VM system uses “ZVM640” as the password for all the
standard z/VM virtual machines.
176 IBM zPDT Reference and Guide

9.4.1 zPDT devmap

We created a devmap named devmapvm that defines a minimal z/VM system. The devmapvm
file is as follows:

[system]
memory 8000m
3270port 3270
processors 3

[manager]
name aws3274 0002
device 0700 3279 3274
device 0701 3279 3274
device 0702 3279 3274
(We usually define at least 10 3270 sessions)

[manager]
name awsckd 0101
device 0200 3390 3990 /z/M01RES
device 0201 3390 3990 /z/VMCOM1 (Address of VMCOM1 is important)
device 0202 3390 3990 /z/640RL1
device 0203 3390 3990 /z/M01S01
device 0204 3390 3990 /z/M01P01
device 0205 3390 3990 /z/M01W01
(Other disks, LAN interfaces, tape drives might also be defined)

9.4.2 zPDT sensitivity

z/VM 6.4 uses advanced channel commands for its paging functions. zPDT releases prior to
GA8 do not support these channel commands. A “standard” z/VM 6.4 system will not work on
zPDT releases prior to GA8. However, a special parameter is available in z/VM 6.4 that
causes it to use older channel commands for paging. With this parameter, z/VM 6.4 should
work correctly with earlier zPDT releases.

This parameter is “PAGING63” and is placed in the IPL parameters line in the Stand Alone
Program Loader screen. This has been done in the AD-CD z/VM 6.4 release. You should be
aware that a z/VM 6.4 system obtained elsewhere might not have this parameter set and
consequently would not work with zPDT releases older than GA8. (You could, of course,
insert the parameter in the Program Loader screen to overcome the problem.)

9.5 IPL and logon

We used the following zPDT command to IPL this system:

$ ipl 200 parm 0700

The 0700 is the address of a 3270 terminal. The initial IPL may produce the stand-alone
loader panel shown in Figure 9-1 or it may go directly to the OPERATOR session, depending
on z/VM customization. If the stand-alone loader panel is displayed, the IPL parameters
(shown in Figure 9-1) may need to be changed. The pdvol parameter must point to the
address of the VMCOM1. If you want the OPERATOR display at an address other than 700
you can add “cons=xxxx” to the IPL parameters.
Chapter 9. Other System z Operating Systems 177

Figure 9-1 Stand Alone loader

After changing any Stand Alone loader IPL parameters, press PF10 to load z/VM. The local
3270 you specified (0700) is automatically logged on as OPERATOR. The initial panel should
look something like Figure 9-2.

The default Stand Alone loader IPL parameters can be changed by logging on as MAINT620
and entering a command similar to the following:

SALIPL 123 (EXTENT 1 IPLPARMS pdnum=1 pdvol=0201 cons=0700

This command changed the default IPL parameters (in the Stand-Alone Loader) to the values
indicated. User MAINT cannot be logged on when using this command.

During z/VM startup you can “warm start” or “cold start” the system. We suggest you always
use warm start unless you have a very specific reason for cold starting z/VM. Do not confuse
z/VM cold start with the z/OS AD-CD cold start functions. You might need to reply WARM at an
operator prompt and NO for a prompt about the time-of-day clock; typically, pressing Enter is
all that is needed for these prompts.

Figure 9-2 Initial OPERATOR display

STAND ALONE PROGRAM LOADER: z/VM VERSION 6 RELEASE 4.0
 DEVICE NUMBER: 0200 MINIDISK OFFSET: 39 EXTENT: 1
 MODULE NAME: CPLOAD LOAD ORIGIN: 1000
 --------------------------------IPL PARAMETERS--------------------------------
pdvol=201 pdnum=1 PAGING63
 -----------------------------------COMMENTS-----------------------------------

 9= FILELIST 10= LOAD 11= TOGGLE EXTENT/OFFSET

 10:13:24 z/VM V6 R4.0 SERVICE LEVEL 1601 (64-BIT)
 10:13:24 SYSTEM NUCLEUS CREATED ON 2016-10-06 AT 23:55:42, LOADED FROM M01RES
10:13:24
10:13:24 **
10:13:24 * LICENSED MATERIALS - PROPERTY OF IBM* *
10:13:24 * *
10:13:24 * 5741-A07 (C) COPYRIGHT IBM CORP. 1983, 2016. ALL RIGHTS *
10:13:24 * RESERVED. US GOVERNMENT USERS RESTRICTED RIGHTS - USE, *
10:13:24 * DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP SCHEDULE *
10:13:24 * CONTRACT WITH IBM CORP. *
10:13:24 * *
10:13:24 * * TRADEMARK OF INTERNATIONAL BUSINESS MACHINES. *
10:13:24 **
10:13:24
10:13:24 **
10:13:24 * IBM z/VM Single System Image Feature is enabled and active.
10:13:24 **
10:13:24
 10:13:24 HCPZCO6718I Using parm disk 1 on volume VMCOM1 (device 0207).
 10:13:24 HCPZCO6718I Parm disk resides on cylinders 1 through 120.
10:13:24 Start (Warm|Force|CoOLDCLEAN) (DRain) (DIsable) (NODIReect)
 (NOAUTOlog) or (SHUTDOWN)

 CPREAD ZVM640
178 IBM zPDT Reference and Guide

The CPREAD at the bottom of a screen means that z/VM is waiting for your input; during
startup you can usually simply hit the 3270 Enter key. “MORE...” or “HOLDING” at the bottom of
a panel indicates that you should clear the panel.2 You may need to clear it several times until
all the initial OPERATOR messages are displayed. The “ZVM640” at the bottom right of the
screen is the z/VM system name. AD-CD systems sometimes use this name as the default
password,3 although your AD-CD z/VM system might be different.

At this point you should have the z/VM logo display on any other active 3270 sessions, as
shown in Figure 9-3 on page 179. If the logo display is not present, try entering an ENABLE ALL
command in the OPERATOR session.

Figure 9-3 z/VM logo display

The z/VM logo panel is commonly used in two ways. The most basic way is to enter a z/VM
userid and password. An alternative use is to enter DIAL xxxx in the command line, where
xxxx is the name of a running z/VM guest that accepts 3270 connections. No userid or
password is needed when using a DIAL command.

You can disconnect from the OPERATOR session by entering a DISC command. This is not
the same as logging off from the session. A disconnected session continues to run, but
without the terminal. You can log back into the session. For the operator session, the userid is
OPERATOR and the password is OPERATOR.

During the initial screens during IPL, you see messages about EREP, DISKACNT, and OPERSYMP
files displaying the percentages full for each file. In general, z/VM manages these files and
you do not need to take any actions for them.

Shutdown
To stop z/VM issue the SHUTDOWN command in the OPERATOR session or in another
session that has sufficient privileges.

2 zPDT users of x3270 often set the PAUSE or END key (on their PC keyboard) to perform a 3270 clear operation. If
this is not done, then Alt+C may perform the clear function with some emulator setups.

3 This is obviously terrible security; you can change passwords be editing the VM directory or using DIRMAINT.

 z/VM ONLINE

 / VV VVV MM MM
 / VV VVV MMM MMM
 ZZZZZZ / VV VVV MMMM MMMM
 ZZ / VV VVV MM MM MM MM
 ZZ / VV VVV MM MMM MM
 ZZ / VVVVV MM M MM
 ZZ / VVV MM MM
 ZZZZZZ / V MM MM

 built on IBM Virtualization Technology

 Fill in your USERID and PASSWORD and press ENTER
 (Your password will not appear when you type it)
 USERID ===>
 PASSWORD ===>
 COMMAND ===>

 RUNNING ZVM640
Chapter 9. Other System z Operating Systems 179

9.6 Quick z/VM review

9.6.1 CMS

CMS is the Conversational Monitor System and is a small, single-user operating system.
Every user running CMS is running a separate CMS in a separate virtual machine. CMS is a
special-case operating system that runs only under z/VM. z/VM administration is done
through CMS. The READY prompts you see on the windows are indicators that CMS is running
in a virtual machine.

It is possible to use CMS for application development and as a base for user applications.
This use is not described here. However, basic CMS use is required for almost any
administrative activity for a z/VM system.

After IPLing z/VM and logging on with a userid, you need to IPL CMS within that userid
(assuming you want to use CMS). This CMS IPL can be automatic (when you log on to the
userid) or it can be done manually with an IPL CMS or IPL 190 command. The automatic IPL
is enabled by a line in the z/VM directory entry for the userid. A RUNNING indicator in the lower
right corner of the 3270 panel is an indicator that CMS is running.

Each CMS user has his own copy of CMS; it is a single-user operating system. (In practice,
there is a single copy of CMS in shared virtual memory.) CMS has a large set of functions and
commands and the basic z/VM Control Program (CP) also has a large set of commands. In
general, both sets of commands can be entered on the CMS command line. In a few cases,
CP commands must be prefixed by the letters CP or #CP followed by a space and then the
command.

When you log on to z/VM, your virtual machine is in one of three environments:

� It did an IPL of CMS and you may enter CMS and CP commands.

� It did an IPL of another operating system, such as z/OS, and is under the control of that
operating system.

� It did not do an IPL of anything. Only CP commands may be entered. (At this point you
might want to IPL CMS in your virtual machine.)

When using CMS (or interacting directly with CP, if CMS has not been started) the 3270
session is in a pseudo-3215 mode. This is a typewriter-like interface, with a command line at
the bottom of the panel. Some CMS functions, such as XEDIT, provide a full-panel interface
similar to ISPF.

9.6.2 User MAINT

z/VM has a predefined userid, MAINT, and most basic z/VM administration is performed while
using this userid and working through CMS.4

Figure 9-4 Logon to MAINT

Important: The remainder of this z/VM material is for almost-new z/VM users. We make
no attempt to provide a z/VM primer or to cover many details. The following material can
be regarded as “reminders” for some of the more basic details.

4 Some administration is also done through userid MAINT620.
180 IBM zPDT Reference and Guide

In a large production operation, MAINT would be used sparingly.5 In our small sandbox z/VM
systems, we use MAINT frequently. Among other things, MAINT can edit the z/VM directory
and activate a new copy. The directory is where z/VM users are defined, along with details of
each user’s virtual machine. An example of directory updating is presented later.

Note that the terms z/VM users, guests, userids, and virtual machines are used
interchangeably.

9.6.3 Minidisks and files

z/VM works with three types of disk volumes:

� CP-owned volumes. These contain the minidisks needed to run z/VM, or contain paging
space, spool space, or temporary space. They may also contain user minidisks.

� User-owned volumes. These typically contain minidisks but not those used by the
operating system.

� Other disks. These can be used as standard (non z/VM) volumes or as whole-pack
minidisks. The z/OS volumes we sometimes use under z/VM are normally defined as
whole-pack minidisks. The whole-volume minidisk concept is needed for sharing volumes
among multiple z/VM virtual machines, such as multiple z/OS systems.

A minidisk is a contiguous range of 3390 cylinders6 that is seen by a z/VM user as a complete
disk volume (typically with a small number of cylinders). There are three common formats for
a minidisk:

� CMS, which includes all the z/VM control files and user files
� z/OS, which includes a label, VTOC, and the usual z/OS types of data sets
� Linux for System z

A minidisk is created by defining it in the z/VM directory. You are responsible for formatting
your own minidisks. For CMS this is done with a format 191 a command, for example. For
z/OS, the ICKDSF utility is used.

A minidisk has a virtual address, such as 190, that is assigned in the z/VM directory. Some
minidisk addresses have predefined or conventional meanings. For example, address 190
contains many CMS modules (and is read-only for most users). Most CMS users have a 191
minidisk, which is their default CMS work disk. There are other well-known minidisk
addresses that are used by multiple users. Otherwise, a minidisk address is simply a
hexadecimal number (usually three digits) that you select.

To access a minidisk under CMS, an access mode letter must be assigned. For example, if
you have minidisk 456 defined in your directory entry, you might enter the CMS command acc
456 z to access the minidisk as the z disk. Your 191 disk (which is almost always defined for
a CMS user) is your default “a” disk. For some functions, your minidisks are searched in
order, a, b, c, and so forth. The mode letter (the “disk letter”) is not a fixed value. You might
use acc 456 r the next time you log on and access your 456 minidisk as your “r” disk.

A CMS user identifies a file with three qualifiers: a file name, a file type, and a mode (which is
usually just the drive letter for the minidisk containing the file). The name is not case
sensitive.

5 MAINT is quite similar to IBMUSER in an initial z/OS installation and is somewhat like root in a Linux system. These
user IDs have all the necessary authority to further customize and manage the systems. In production operations,
various authorities are delegated to other user IDs, and the MAINT and IBMUSER IDs are seldom used. In small
sandbox systems, MAINT, IBMUSER, and root are often directly used, even when not strictly necessary.
6 Geometry other than 3390 can be used, but 3390s are the most common.
Chapter 9. Other System z Operating Systems 181

MYDATA TEXT A1
 | | |
 | | +---File mode (fm) (The notation fn, ft, fm is common)
 | +--------File type (ft)
 +---------------File name (fn)

The first part of the name (MYDATA) is completely arbitrary and should be meaningful to you.
The second part (TEXT) can be arbitrary, but some applications attach meaning to this part of
a file name. For example, if the second part of the name is EXEC, it is assumed to contain
commands for a command interpreter such as REXX. The third part (A1) has a disk letter (A)
and might have a file mode number (1 in the example here) that can be:

� 0: This makes the file private. Other users with read-only access to your minidisk will not
see this file. Users with read-write access will see it.

� 1: This is the default file mode number for read-write files.
� 2 and 5: These function like number 1 and can be used to create a subset.
� 3: Files with this number are automatically erased when they are read.
� 4: These files are in a simulated MVS format (not used in any of our examples).
� 6: This indicates the file should be updated in place, with appropriate programming.

For practical purposes, you can omit the mode number and let it default to 1. This is suitable
for almost all purposes.

9.6.4 Inspecting your disks

Assuming you are logged onto z/VM as MAINT or as another userid, you can use q da all
and q disk commands as shown in Figure 9-5.

Figure 9-5 Inspecting the disks

The q dasd all command displays all the physical DASD volumes connected to z/VM. If they
are in a z/VM format, more information is displayed. In the example here, volumes at
addresses 200-207 are in formats recognized by z/VM. Volumes at addresses A80-A9F have
standard labels but are not in z/VM formats.

The q disk command displays this user’s minidisks. In this example, the user is MAINT and
owns the seven minidisks listed. A minidisk label (MNT191 for the first minidisk) is not
important, but might be meaningful to the user. The VDEV value is the address of the

q da all
DASD 0200 CP OWNED M01RES 90
DASD 0201 CP SYSTEM 640RL1 12
DASD 0203 CP SYSTEM M01W01 11
DASD 0204 CP OWNED M01S01 1
DASD 0205 CP OWNED M01P01 0
DASD 0206 CP OWNED VMCOM1 13
DASD 0A80 HDRES1 , DASD 0A81 HDRES2 , DASD 0A82 HDSYS1 , DASD 0A83 HDUSS1
An offline DASD was not found.
Ready; T=0.01/0.01 10:19:15

q disk
LABEL VDEV M STAT CYL TYPE BLKSZ FILES BLKS USED-(%) BLKS LEFT BLK TOTAL
MNT191 191 A R/W 175 3390 4096 3 10-01 31490 31500
MNT5E5 5E5 B R/O 18 3390 4096 136 1378-43 1862 3240
MNT2CC 2CC C R/W 10 3390 4096 3 110-06 1690 1800

Ready; T=0.01/0.01 10:19:19
 RUNNING ZVM640

These are online disks that are
not owned by VM. They might be
for a z/OS system, for example.

etc...
182 IBM zPDT Reference and Guide

minidisk. The mode letters (A, B, C, D, E, S, S=Y/S) were probably established by the user
PROFILE file that is automatically executed when the user logs onto the system. The
meanings of the other fields are fairly obvious.

The CP-owned disks contain a mixture of paging space, temporary disk space (TDISK), spool
space, directory space (DRCT), minidisks, and unused space. The q alloc all and q alloc
map commands can display this information.

You can list the files on a minidisk with a command such as filelist * * a. This example
says to list all file names (first asterisk) and all file types (second asterisk) on the minidisk
currently accessed as drive a. An example is shown in Figure 9-6.

Figure 9-6 FILELIST command

The output from filelist is in a full-panel format that can be scrolled with PF8 and PF7. PF3
is used to exit from the command. This format is very useful because CMS commands can be
entered in the first column of a line and the file named in that line becomes the operand of the
CMS command. Two common commands are browse and x (or xedit).

When a new CMS disk exists (perhaps with a new z/VM userid), it must be formatted for CMS
use. Assuming the new disk is my 191 disk (the default “A” disk for a CMS user), at my first
logon I could use this dialog:

ipl CMS (if not automatically IPLed at logon)
format 191 a
Format will erase all files on disk A (191). Do you wish to continue?
Enter 1 (YES) or 0 (NO).
1
Enter disk label:
Bill91 (the label is arbitrary; 6 characters)
FOrmatting disk A
10 cylinders formatted on A (191)

Another user’s minidisk
You might want to access another user’s minidisk, assuming it is not password-protected. If
user Joe has minidisk 456 defined, you might do the following tasks:

link joe 456 456 (link to joe’s 456 as my own 456)
acc 456 j (access it as my j disk)
filelist * * j (see what files are on the minidisk)

There are two minor problems with this method. What if you already have a minidisk defined
at address 456?7 What if you are already using file mode j? Another method is this:

 MAINT FILELIST A0 V 169 Trunc=169 Size=5 Line=1 Col=1 Alt=0
Cmd Filename Filetype Fm Format Lrecl Records Blocks Date Time
x USER DISKMAP A1 F 100 360 9 2/26/13 9:13:57
 SETUP $LINKS A1 V 26 33 1 9/27/12 17:09:13
 PROFILE EXEC A1 V 72 32 1 9/23/11 12:38:14
 SYN SYNONYM A1 F 80 1 1 1/15/03 9:46:33
 PROFILE XEDIT A1 V 45 17 1 11/18/98 12:26:20

1= Help 2= Refresh 3= Quit 4= Sort(type) 5= Sort(date) 6= Sort(size)
7= Backward 8= Forward 9= FL /n 10= 11= XEDIT/LIST 12= Cursor

====> X E D I T 1 File
Chapter 9. Other System z Operating Systems 183

vmlink joe 456 (use the vmlink command instead)
DMSVML2060I JOE 456 linked as 0120 file mode z
Ready
filelist * * z

In this case z/VM selected an unused address (0120) and an unused file mode (z) for you.
When you are finished with JOE’s 456 minidisk you can:

rel z (free file mode z)
det 120 (detach the minidisk from my session)

9.6.5 XEDIT

XEDIT is the normal CMS editor. Most z/VM administration and customization is done by
editing CMS files. New z/VM users who are familiar with ISPF will find XEDIT easy to use
once a few differences are mastered. You can create new CMS files with XEDIT simply by
naming it. For example, x newfile stuff a creates a new file named newfile stuff and
place it on your “a” disk (assuming you save the file before exiting from XEDIT).

Important XEDIT commands (on the command line) are as follows:

file: Save the current file
qquit: Exit without saving the current file
/xxx/: locate the next line containing characters xxx
+nn: Scroll forward nn lines
-nn: Scroll backward nn lines
top: Scroll to beginning of the file
bottom: Scroll to the end of the file
nulls on or nulls off: Select 3270 nulls/blanks usage

The default PF key definitions are as follows:

� PF1: Help
� PF2: Insert a blank line after the line with the cursor
� PF3: Quit (if no changes were made); exit from Help function
� PF4: Tab to columns 5, 10, 15, and so forth
� PF7: Scroll backward
� PF8: Scroll forward
� PF9: Split or Join, depending on the cursor location
� PF10: Scroll right 10 columns
� PF11: Scroll left 10 columns
� PF12: Issue a file command

Several XEDIT line commands (overtyping the ===== field in the window) are as follows:

d or dnn Delete one or nn lines.

i or inn Insert one or nn lines.

“ or “nn Repeat the line one or nn times.
dd followed by dd in a later line Delete the indicated block of lines.

cc followed by cc in a later line Copy the indicated block. The target is noted with p
(prior to this line) or f (following this line).

7 You may use a different address, such as LINK JOE 456 789, but you then must determine whether you already
have a 789 disk. This is a trivial problem for most users, who have very few minidisks defined, but it might be a
significant problem for some users.
184 IBM zPDT Reference and Guide

XEDIT has many more commands and facilities than mentioned here, but these few
commands might be sufficient for initial use.

9.6.6 z/VM directory

z/VM users and minidisks are defined in the z/VM directory. There are two forms of the
directory: the source file8 and the active directory. A special command reads the source file
and creates (or updates) the active directory. Changing the source directory has no effect
until the command is executed to create a new active directory.

If you log on as MAINT, you can access the source directory with one of these commands:

browse user direct c (browse it)
x user direct c (edit it))

Figure 9-5 on page 182 shows that MAINT’s “C” drive is minidisk 2CC.

z/VM offers the DIRMAINT tool that is typically used to maintain the z/VM directory. For very
small z/VM systems, such as a sandbox zPDT system, we can “manually” work with the
directory.9 We suggest you browse the directory on your z/VM system to obtain a general look
at it. A quick look includes the following items:

� The PROFILE stanzas define lines that may be included in user definitions by using an
INCLUDE statement.

� Skip over sections such as USER $DIRECT$ NOLOG. These help produce a clean disk map.

� The first real user definition might be for MAINT. The first line of this section begins with
the keyword IDENTITY. This is a new keyword that is significant for multiple linked z/VM
systems (new with release 6.2). In a simple environment, the IDENTITY statement is
equivalent to a USER statement.

� Ignore the SUBCONFIG statements, but observe that many statements are “commented
out” by an asterisk in the first column.

� LINK statements refer to a minidisk owned by another user. For example, in MAINT’s
directory definitions:

LINK PMAINT 2CC 2CC MR

means that the minidisk at address 2CC in user PMAINT’s definitions is used at address
2CC in MAINT’s virtual machine.

A simple user definition might be added as shown in Figure 9-7 (these lines would be added
to the directory between two existing user entries, or at the end).

8 There could be multiple source files, but we ignore this detail here.
9 Manually editing the z/VM directory is not a recommended process for serious z/VM users. However, it does

bypass the learning curve for using DIRMAINT.
Chapter 9. Other System z Operating Systems 185

Figure 9-7 Simple user definition

In this example, the userid is BILL and the password is W2WO. The virtual machine is
128 MB, which is more than ample for CMS. The IPL statement causes an automatic IPL of
CMS when user BILL logs onto z/VM. The SPOOL statements are probably not used for
simple situations but are traditional. A console is necessary and 009 is a traditional address.
The LINK statements point to minidisks of other users (all in read-only mode). The specific
LINKs shown here provide basic CMS functionality.

The MDISK statement defines a new minidisk at BILL’s address 191. (This is the traditional
address for the A disk.) This statement specifies that the device is a 3390 with volser
VMCOM1, with the minidisk starting on cylinder 6119 and it is 10 cylinders long. The MR
operand specifies basic read/write access.

How was the cylinder number (6119) obtained? A command is used to map all the minidisks
defined in the directory; new minidisks then can be defined on free cylinders. (On a larger,
production z/VM system all this is usually done by the DIRMAINT program which handles
cylinder addresses automatically.) The following command (run by MAINT) runs the diskmap
program against the file user direct c, which is the directory source file:

diskmap user direct c

The output of the program is the file user diskmap a. This may be browsed, as follows:

browse user diskmap a

Inspecting this output, we found that volume M01W01 had no minidisks defined after cylinder
6118.10 We added the MDISK statement for user BILL and ran the mapdisk program again, to
verify that the new minidisk was correctly mapped. After updating the user direct c file, you
can activate this new directory; this builds a new working directory for z/VM. The command is
as follows:

directxa user direct c

Changes to the directory are not effective until activated by directxa. Be certain to look for
any error messages.

Attempting to manage absolute cylinder addresses and ranges when defining minidisks can
appear messy and crude. It is. This is why higher-level tools such as DIRMAINT exist;
however, using these tools requires additional skills. A very small z/VM, with only a few

10 This was true when this description was written. Subsequent z/VM releases have undoubtedly changed the
locations and quantity of free space in the system disks.

* USER BILL IS TO DEMONSTRATE A SIMPLE VM USERID
*
USER BILL W2WO 128M 128M G
MACH ESA
CPU 0
IPL 190
SPOOL 00C 2540 READER *
SPOOL 00E 1403 A
CONSOLE 009 3215 T
LINK MAINT 0190 0190 RR
LINK MAINT 019D 019D RR
LINK MAINT 019E 019E RR
LINK TCPMAINT 592 592 RR
MDISK 191 3390 6119 10 VMCOM1 MR
*

Do not copy this
statement !
186 IBM zPDT Reference and Guide

simple added users, can be readily managed by directly editing the z/VM directory. A few
guidelines include:

� Do not change the minidisk definitions (or paging, spooling, temporary disk space, or
directory space) for the system volumes, with the exception that you can add a few small
minidisks in empty space on volumes such as M01W01.

� Use the diskmap program frequently and look for overlap or gap flags. Incorrect cylinder
specifications can overlap two minidisks, usually resulting in corruption of both.

� Never allocate a minidisk on cylinder zero. (This restriction does not apply to full-volume
minidisks.)

9.6.7 Spool contents

z/VM can emulate card readers, line printers, and card punches for users. Although the
equivalent “real” devices are no longer used, these virtual devices can be useful. In general,
simple use of z/VM as a base for running multiple z/OS guests will not involve these devices.
However, various internal z/VM services (such as TCP/IP) write logs to the virtual printer or
send messages and logs as input to the virtual card reader. You may want to review this
information. In the fullness of time (probably a long time), these could fill the spool space
provided with the distributed AD-CD z/VM system.

One way to view the contents of the virtual card reader and printer queue is with the
commands:

q rdr
q prt
q pun (although there are seldom any virtual punch files)

with output similar to that shown in Figure 9-8.

Figure 9-8 Spooled files

The first column indicates the z/VM userid that owns the file.

You can list the spooled rdr files that you own with the rdrlist command, as shown in
Figure 9-9 on page 188.

Ready; T=0.03/0.08 10:27:04
q rdr
OWNERID FILE CLASS RECORDS CPY HOLD USERFORM OPERFORM DEST KEEP MSG
MAINT 0027 T CON 00000022 001 NONE STANDARD STANDARD OFF OFF OFF
PMAINT 0005 T CON 00000075 001 NONE STANDARD STANDARD OFF OFF OFF

MAINT 0031 T CON 00000053 001 NONE STANDARD STANDARD OFF OFF OFF
OPERATNS 0001 D SYS 00000000 001 NONE OFF OFF
OPERATNS 0002 D SYS 00000000 001 NONE OFF OFF
Ready; T=0.01/0.01 10:27:08
q prt
OWNERID FILE CLASS RECORDS CPY HOLD USERFORM OPERFORM DEST KEEP MSG
OPERATOR 0025 T CON 00000077 001 NONE STANDARD STANDARD OFF OFF OFF
DTCVSW1 0018 T CON 00000038 001 NONE STANDARD STANDARD OFF OFF OFF
DTCVSW2 0018 T CON 00000038 001 NONE STANDARD STANDARD OFF OFF OFF
MAINT 0032 T CON 00000123 001 NONE STANDARD STANDARD OFF OFF OFF
Ready; T=0.01/0.01 10:27:14
 RUNNING zVM640

...
Chapter 9. Other System z Operating Systems 187

Figure 9-9 Display from the rdrlist command

The rdrlist display is quite useful. By moving the cursor to one of the lines and pressing
PF11 you can peek (view) the contents of the file. You can discard files by using the discard
line command; entering equal signs (=) on other lines indicates they are to have the same
treatment as the command (the discard command in this case). Unfortunately, there is no
equivalent prtlist command.

You can transfer a spool file from another owner to your own rdr, where you can view (peek
command or PF11) it or discard it. The following example transfers OPERATOR’s reader file
number 20 (the file number from the q rdr command) to the current (asterisk) user’s reader:

cp transfer operator rdr 20 to * rdr

On a larger scale, the following commands may be used by an authorized user (such as
MAINT) to purge many or all spooled files:

purge <userid> rdr <file number> (purge a specific rdr spool file)
purge <userid> rdr ALL (purge all the user’s rdr files)
purge <userid> prt <file number> (purge a specific prt spool file)
purge <userid> prt ALL (purge all the user’s prt files)
purge system rdr ALL (purge all the rdr files in spool)
purge system prt ALL (purge all the prt files in spool)

The <userid> may be an asterisk, in which case the command applies to the current user.
The <file number> is usually taken from the q rdr or q prt commands.

9.6.8 Simple system queries

A number of simple query, display, and access commands might be useful:

� q disk: List your minidisks.
� q da all: List the “real” online disks.
� q alloc all: List page, spool, temporary disks, and directory usage.
� q alloc map: List percentage use for page and spool disks.
� q system: Another way to list system disks.
� q accessed: List minidisks you have accessed.
� q links 120: List userids who have links to my 120 disk.
� q pf: List Program Function Key assignments.
� q stor: How much System z storage?
� q n: Which userids are logged on?
� q all: What disks and terminals are online?

 MAINT RDRLIST A0 V 164 Trunc=164 Size=13 Line=1 Col=1 Alt=2
Cmd Filename Filetype Class User at Node Hold Records Date Time
* (none) (none) CON T DTCVSW1 SSI1 NONE 48 2/26 8:49:33
 (none) (none) CON T DTCVSW2 SSI1 NONE 48 2/26 8:49:33
discardnone) (none) CON T MAINT SSI1 NONE 78 2/26 8:50:17
= (none) (none) CON T DTCVSW1 SSI1 NONE 38 2/28 9:22:37
= (none) (none) CON T DTCVSW2 SSI1 NONE 38 2/28 9:22:37
= (none) (none) CON T MAINT SSI1 NONE 20 2/28 10:33:32

 (none) (none) CON T DTCVSW1 SSI1 NONE 53 3/02 12:29:22

1= Help 2= Refresh 3= Quit 4= Sort(type) 5= Sort(date) 6= Sort(user)
7= Backward 8= Forward 9= Receive 10= 11= Peek 12= Cursor

====> X E D I T 1 File

........
188 IBM zPDT Reference and Guide

� q rdr: List the files in your virtual reader.
� q prt: List files in your virtual print queue.
� set pf12 retrieve: Make PF12 function as a retrieve key.
� force userid: Terminate a user immediately.
� rdrlist: List files in your virtual reader.

– Use PF11 to peek at (view) any of these files.
– Use discard to delete a particular file.

� purge system rdr all: Purge all reader files in the z/VM system.

– purge joe rdr 1234: Purge particular reader file belonging to userid joe.
– purge joe rdr all: Purge all joe’s reader files.

� purge system prt all: Purge all printer files in the z/VM system.
� link joe 456 456: Link to joe’s 456 disk as my 456 disk.
� acc 456 j: Access my 456 disk as CMS drive j.
� filelist * * a: List the files on your a disk.
� rel j: Release a CMS drive assignment
� det 456: Detach disk 456 from my userid
� vmlink joe 345: a Combined link and acc function.
� format 191 a: Format a new minidisk.
� directxa user direct c: Activate an updated z/VM directory.
� ind: How busy is the system?
� diskmap user direct c: Create a minidisk map based in directory user direct c.
� browse user diskmap a: Inspect a file

9.6.9 zIIPs and zAAPs

z/VM can provide simulated zIIPs or zAAPs, working only with CPs in the base zPDT system.
Furthermore, z/VM can provide more logical CPs, zIIPs, and zAAPs than there are CPs
present in the base zPDT system.

The definition of a z/VM guest, in the z/VM directory, can contain statements such as these:

MACH ESA 5 (allow up to 5 logical processors)
CPU 0 BASE
COMMAND DEFINE CPU 1 TYPE ZIIP

The two logical processors (one CP, one zIIP) can be used even if the base zPDT definition
has only a single CP (a model1090-L01, for example). Of course, there are performance
implications if the number of logical processors greatly exceeds the number of “real” System
z processors, but this may be acceptable for development and testing situations.

9.6.10 Paging

If you run z/OS (or another System z operating system) under z/VM on a zPDT base
machine, remember that you potentially have three levels of paging:

� The base Linux system pages whenever virtual memory usage exceeds the available real
memory. Our advice to have at least 1 GB more real memory than your defined for System
z memory size. This is intended to minimize Linux paging. A Linux page fault in the
primary zPDT CP process causes the CP to pause until the page fault is resolved.

� z/VM pages when its requirement for virtual memory exceeds the defined System z
memory (which is actually base Linux virtual memory). Each z/VM guest (whether a CMS
user or a whole z/OS system) resides in z/VM virtual memory. z/VM systems on larger
machines, running multiple significant guests, tend to page rather heavily.
Chapter 9. Other System z Operating Systems 189

� z/OS (or another System z operating system) pages when its need for real memory (which
is actually z/VM virtual memory11) exceeds whatever size was defined in the z/VM
directory for the z/OS guest.

A zPDT system has limited I/O bandwidth to its disk, and that bandwidth is best used for
running applications rather than for paging. Our advice is to consider your memory usage
carefully when planning to use z/VM for multiple guests.

9.7 z/TPF

z/TPF is a specialized IBM operating system used for very high transaction-rate,
high-availability applications such as airline reservations, hotel reservations, ATM
transactions, and so forth. There is a substantial, well-established user z/TPF community,
although their z/TPF usage is often described under their own in-house system names and
“z/TPF” is seldom mentioned publicly. zPDT can be a useful base for z/TPF application
development, unit testing, and education. At the time of writing, z/TPF for zPDT licensing is
through zD&T as a limited offering. (The following text uses “zPDT” to mean the zPDT
component that is part of the zD&T product offerings.)

Serious inquiries about z/TPF should go to TPFQA@us.ibm.com.

There is no prepackaged z/TPF system similar to the AD-CD packages for z/OS or z/VM. The
assumption is that z/TPF customers will either generate a suitable z/TPF or will migrate one
of their working z/TPF systems from another platform to zPDT. For the following discussion
we copied12 a “16-mod” system (meaning 16 3390-3 volumes) and used it for basic z/TPF
startup and operation.

z/TPF application development is based on Linux for z Systems, as outlined in Figure 9-10.

Figure 9-10 z/TPF application development flow

Both Linux for z Systems and z/TPF can be used on a zPDT base. While it is possible to run
both these under z/VM in a single zPDT instance, the z/TPF developers recommend using
separate zPDT instances. (These separate zPDT instances can be on a single PC or on
separate PCs.)

11 While conceptually true (ignoring V=R and similar environments), the implementation details depend on the level
of assists enabled through the SIE instruction.
12 We copied the volumes with the zPDT migration utility, working with a z/VM system on the “other end” of the

migration link.

Linux for z Systems
 GCC C/C++

HLASM (on Linux for z Systems)

ELF GOFF

GOFF to ELF conversion utility

ELF

shared object

load to zTPF

z/TPF applications can
be a mixture of C, C++,
and assembly code
190 IBM zPDT Reference and Guide

The basic zPDT devmap we used is as follows:

[system]
memory 4096m
processors 1
3270PORT 3270

[manager]
name aws3215 0
device 0056 3215 3215 #primary command console for z/TPF

[[manager]
name aws3274 4
device 008B 3277 3274 int061 #after start up can be operator console
device 0024 3284 3274 int062 #3284 configuration needed, but not used

[manager]
name awsosa 12 --path=f8 --pathtype=osd
device 1A0 osa osa
device 1A1 osa osa
device 1A2 osa osa

[manager]
name awstape 8
device B600 3480 3803 /z/TAPE00 #These are SL tape volumes
device B601 3480 3803 /z/TAPE01 #The tape volumes are empty except
device B602 3480 3803 /z/TAPE02 #for a standard label on each volume
device B603 3480 3803 /z/TAPE03

[manager]
name awsckd 13
device 1EC0 3390 3990 /z/BJ0001 #IPL volume
device 1EC1 3390 3990 /z/BJ0002
device 1EC2 3390 3990 /z/BJ0003
device 1EC3 3390 3990 /z/BJ0004
device 1EC4 3390 3990 /z/BJ0005
device 1EC5 3390 3990 /z/BJ0006
device 1EC6 3390 3990 /z/BJ0007
device 1EC7 3390 3990 /z/BJ0008
device 1ED0 3390 3990 /z/BJ0017
device 1ED1 3390 3990 /z/BJ0018
device 1ED2 3390 3990 /z/BJ0019
device 1ED3 3390 3990 /z/BJ0020
device 1ED4 3390 3990 /z/BJ0021
device 1ED5 3390 3990 /z/BJ0022
device 1ED6 3390 3990 /z/BJ0023
device 1ED7 3390 3990 /z/BJ0024

Operator interaction with z/TPF, especially during initial startup, is somewhat different than
what is found in other z Systems operating systems. Operator interaction is through an
emulated 3215.13 Input commands use the zPDT command awsin to send text to the
emulated 3215, while output text for the emulated 3215 is displayed in the base Linux
command window that was used to start zPDT. z/TPF, at times, frequently repeats prompts
for various input parameters. This frequent asynchronous output (to the emulated 3215, as

13 An IBM 3215 was a typewriter-like console terminal.
Chapter 9. Other System z Operating Systems 191

displayed in the command window used to start zPDT) makes entering commands in the
same Linux command window confusing. We found it easier to use a separate Linux
command window to enter z/TPF commands, as illustrated in Figure 9-11.

Every input to the 3215 terminal is with the zPDT awsin command. Repeatedly typing this is
prone to errors and we used the Linux alias command to set + (the plus sign) to mean awsin.
Thus typing “+ TPF01” is the equivalent of typing “awsin TPF01” and takes less time. The
arrows in the figure illustrates where 3215 responses to z/TPF prompts is echoed in the 3215
output.

The 3277 defined in the devmap can be configured for z/TPF operator commands after the
system is started. The 328414 in the devmap is not actually used, but the z/TPF protocol
needs to associate it with the 3277. The four tape drives in the devmap (only one was used in
our basic z/TPF startup) have premounted tape volumes, as indicated in the devmap. We
earlier initialized these four tape volumes with standard labels by using the zPDT
aws_tapeInit command.

Figure 9-11 Using two Linux command windows for 3215 operation

z/TPF operator commands are rather arcane and we do not attempt to explain z/TPF
operation or usage here. Readers familiar with z/TPF might find our basic startup command
sequence familiar:

ibmsys1: + alias +=awsin <to avoid typing “awsin” many times
ibmsys1: + i <reply to select a z/TPF image
ibmsys1: + TPF01 <we selected an image named TPF01
ibmsys1: + U <continue the startup
ibmsys1: + zdtap <display online tape devices
ibmsys1: + ztvar add b600 <vary tape at address B600 online
ibmsys1: + ztmnt rta b600 ao <mount rta active output on this tape
ibmsys1: + zrstt rep <continue startup
ibmsys1: + zfkpa acc <continue startup
ibmsys1: + zdtim <display hardware TOD clock

14 An IBM 3284 was a small printer that could be connected with a cluster of 3270 terminals.

...

Linux command window #2 Linux command window used to start zPDT

ibmsys1: alias +=awsin
ibmsys1: + i
ibmsys1: + TPF01
ibmsys1: + U
ibmsys1: + zdtap
ibmsys1: + ztvar add b600
ibmsys1: + ztmnt rta b600 ao
ibmsys1: + zrstt rep
ibmsys1: + zfkpa acc

ibmsys1:~> ipl 1ec0
ibmsys1:~> 3215> IPLB0157A SPECIFY: I - IMAGE SELECTION,
3215> C - FORCE ZCORO PROMPT AND SELEC
3215| Waiting for input
ibmsys1:~> 3215< i
3215> IPLB0002I THE SYSTEM ID IS DANBURY.BJ0001 A_
3215> ON PROCESSOR D3017FAB MODEL 1090+
3215> IPLB00D2I TPF WILL USE 01 OF THE 01 AVAILABLE I-STR
3215> IPLB0154A VALID IMAGE SELECTIONS_
3215> TPF01 ACTIVE PRIMARY_
3215> TPF02 _
3215> PUT12 _
33215> SPECIFY IMAGE NAME+
3215| Waiting for input
3215< TPF01
3215> IPLB0151I PROCESSING CONTINUES WITH IMAGE TPF01 +
3215> IPLB0007I IPL STARTED ON DEV 1EC0 VOL BJ0001+
3215> IPLB0126I ENHANCED-DAT 2 FACILITY IS INSTALLED+
3215> IPLB0026I VOLUME BJ0001 ON 1EC0 IS IPL VOLUME: SYST
3215> IPLB0121W VOL BJ0009, MODULE 004F, SYSTEM PRIME DUP
3215> OFFLINE FROM PREVIOUS IPL, DUP AVAILABLE

...

...
192 IBM zPDT Reference and Guide

ibmsys1: + zatim 1018 tod good <set z/TPF time value
ibmsys1: + zapat cxml timeout-65535 <set longer wachdog timer for XML
ibmsys1: + zdstat <display
ibmsys1: + zdsys <display system status
ibmsys1: + zdcrs <display I/O device state
ibmsys1: + zacrs rep a17 520000 type-prt cpuid-a <add 3274 printer
ibmsys1: + zacrs rep a18 4e0000 type-crt cpuid-a prt-A17 <add 3277
ibmsys1: + zdcrs <display revised I/O state
ibmsys1: + zcycl norm <move to normal state
ibmsys1: + zatme good <indicate TOD is good
ibmsys1: + zdtcp <display tcp status
ibmsys1: + zcycl 1052 <move to normal operation state

The zapat cxml timeout-65535 command might not be familiar to experienced z/TPF
readers. z/TFP monitors the CPU time used for commands and transactions and terminates
functions that take longer than expected. z/TPF startup involves processing a large amount of
XML and this takes longer than z/TPF expects when running on zPDT. The zapat command
extends the timeout period for this XML processing.15

The following listing (with many lines omitted for brevity) illustrates that z/TPF startup follows
the same pattern under zPDT as it would on a larger z System. The 3215 “prompts” indicate
that the output message is displayed on the emulated 3215.

ibmsys1: ipl 1ec0
ibmsys1: 3215> IPLB0157A SPECIFY: I - IMAGE SELECTION, B - BYPASS SELECTION_
3215> C - FORCE ZCORO PROMPT AND SELECT IMAGE+
3215| Waiting for input
ibmsys1: 3215< i
3215> IPLB0002I THE SYSTEM ID IS DANBURY.BJ0001 A_
3215> ON PROCESSOR D3017FAB MODEL 1090+
3215> IPLB00D2I TPF WILL USE 01 OF THE 01 AVAILABLE I-STREAM +
3215> IPLB0154A VALID IMAGE SELECTIONS_
3215> TPF01 ACTIVE PRIMARY_
3215> TPF02 _
3215> PUT12 _
33215> SPECIFY IMAGE NAME+
3215| Waiting for input
3215< TPF01
3215> IPLB0151I PROCESSING CONTINUES WITH IMAGE TPF01 +
3215> IPLB0007I IPL STARTED ON DEV 1EC0 VOL BJ0001+
3215> IPLB0126I ENHANCED-DAT 2 FACILITY IS INSTALLED+
 (additional messages omitted)
3215> IPLB0130I BSS FARF ADDRESSING STAGE IS 3/4, DISPENSE MODE IS 3+
3215> IPLB0031I IPL PROGRAM CALLING CTIN+
3215> CTIN0012I - CT00 INIT STARTED+
3215> CTIN0014I - CT01 TAPE TABLES ALLOCATED AND TSTB INIT+
 (additional normal startup messages omitted)
COTB0176I 10.54.00 TRST BSS TAPE RESTART STARTED +
3215> CSMP0097I 10.54.00 CPU-A SS-BSS SSU-BSS IS-01
COSA0146A 10.54.00 TRST BSS MOUNT RTA TAPE +
3215< zdtap
3215> CSMP0097I 10.54.00 CPU-A SS-BSS SSU-BSS IS-01
COTD0002I 10.54.00 DTAP - TAPE STATUS
 TAPE RESTART INCOMPLETE
ADDRESS NAME SSU STATUS TPIND VOLSER FORMAT #BLOCKS LDR QUEUE
 B600 AVAIL
3215> END OF DISPLAY+
3215< ztmnt rta b600 ao

15 The latest z/TPF code might eliminate the need for this timing change.
Chapter 9. Other System z Operating Systems 193

3215> CSMP0097I 10.54.00 CPU-A SS-BSS SSU-BSS IS-01
COTM0310I 10.54.00 TMNT BSS TAPE RTA MOUNTED ON DEVICE B600
 VSN TAPE00 G0358 S0001 F38K SL BZOS 1 NOCOMP NOENC +
3215> CSMP0097I 10.54.00 CPU-A SS-BSS SSU-BSS IS-01
C (many messages omitted here)
CVRN0004I 10.54.01 RESTART COMPLETED- 1052 STATE+
3215< zdsys
3215> CSMP0097I 10.54.01 CPU-A SS-BSS SSU-BSS IS-01
DSYS0001I 10.54.01 THE SYSTEM IS IN 1052 STATE FOR SUBSYSTEM BSS
 ON BJ0001 CPU-A 26JUL
END OF DISPLAY+
33215< zcycl norm
3215> CSMP0097I 10.54.01 CPU-A SS-BSS SSU-BSS IS-01
CYCL0001I 10.54.01 CYCL TO NORM - STARTED+
ENTER ZATME GOOD TO CONTINUE CYCLE UP OR
ENTER ZATME CNCL TO CANCEL CYCLE UP+
3215< zatme good
3215> CSMP0097I 10.54.01 CPU-A SS-BSS SSU-BSS IS-01
ATME0001I 00.00.00 ZCYCL WILL CONTINUE AS REQUESTED+
 (more messages omitted, inlcuding TCP and HTTPPS startup)
INET0050I 10.33.01 MATIPB IS NOW ACCEPTING CONNECTIONS ON
 IP - ANY PORT - 00351 PID - 400102F7+
3215< zcycl norm
3215> CSMP0097I 10.33.56 CPU-A SS-BSS SSU-BSS IS-01
CYCL0005T 10.33.56 INVALID CYCLE REQUEST+
3215< zstat
3215> CSMP0097I 10.34.06 CPU-A SS-BSS SSU-BSS IS-01 _
3215< zcycl 1052
 (remaining messages omitted)

z/TPF is a complex package and the material presented here is simply to demonstrate that it
can be used under z/TPF. As with any complex package, there is a learning curve involved
and users must develop their own techniques of operation.

z/TPF installation is also complex and involves assembling a large set of macros that create
the steps to install z/TPF. The following is a small excerpt from the assembly job, providing a
flavor of the details involved.

TITLE 'z/TPF BASE-ONLY SYSTEM '
 PRINT NOGEN

* CONFIG - SYSTEM HARDWARE SUPPORT *

 CONFIG APRNT=00E, ADDRESS OF PRINTER FOR IPL SEQUENCE X
 DUMPDEV=PRTR, UPON IPL DUMPS ARE SENT TO PRINTER X
 FQTK=NO, NO FARE QUOTE TICKETING X
 MAPSP=NO, DO NOT INCLUDE 3270 MAPPING SUPPORT X
 MSGSW=NO, NO MESSAGE SWITCHING SUPPORT X
 USER=USA, USER OF PARS X
 DCUSV=64, ADDRESS RANGE DASD CONTROL RANGE X
 ENTERPRISE=DANBURY, X
 COMPLEX=TPFANET, X
 SYSID=(A), SDPS X
 VM=YES, TPF WILL RUN UNDER VM/370 X
 RES=NO, DO NOT INCLUDE RES APPLICATION X
 TEST=NO, WP TEST SYSTEM PARMETER X
 ACF=YES, ACF FEATURE X
 MPIF=YES, MPIF FEATURE X
 NEF=YES, ALCI SUPPORT X
194 IBM zPDT Reference and Guide

 TPFAR=YES, TPFAR FEATURE X
 FUNCEXT=YES, FUNCTION RETURN X
 WTOPCUNS=YES, X
 SELACT=YES, ENABLE E-TYPE LOADER SEL. ACTIVATE X
 APACHE=YES, INCLUDE APACHE CODE X
 APACHEV2=YES, INCLUDE APACHE CODE X
 TAR=YES, INCLUDE TAR/PAX SUPPORT X
 LIBCURL=YES, INCLUDE LIBCURL LIBRARY X
 MYSQL=YES, Include MySQL support X
 BPCRLOAD=YES, Bypass CRPA load in restart X
 ZLIB=YES, Enable ZLIB support for Apache X
 OPENLDAP=YES, Enable OpenLDAP support X
 BDB=YES, Enable BDB support X
 PRRS=NO, Enable PRRS support X
 CTKI32LC=NO GENERATE CTKI IN PRE-32LC FORMAT

* ***** DASD ***** *

 IODEV IOADR=0260,DVTYP=DASD VPARS
 IODEV IOADR=03E0,DVTYP=DASD VPARS
 IODEV IOADR=0460,DVTYP=DASD VPARS
 (many lines omitted)

* ***** TAPE ***** *

 IODEV IOADR=32,DVTYP=TAPE STAND ALONE 3590
 IODEV IOADR=42,DVTYP=TAPE VTAPE
 IODEV IOADR=43,DVTYP=TAPE VTAPE
 (many lines omitted)

* CORREQ - TPF CORE DEFINITION *

 CORREQ MMES=20, max no of 1M frames/ecb in 31bit X
 XMMES=2, max no of 1M frames/ecb in 64bit X
 EMPS=20, max size of 31bit ECB heap X
 EPRIV=4, ECB private area size in MB X
 TRENTRY=200, max no of entries in buffer X
 ESPS=2, stack size in MB X
 AP64CW=200, size of copy-on-write 64-bit CRPA X
 AP31=80, size of standard 31-bit CRPA (MBs) X
 AP31CW=80, size of copy-on-write 31-bit CRPA X
 AP64=80, size of standard 64-bit CRPA (MBs) X
 MCMTB=1024
 CORREQ MEMCONFIG=IBMSMALL, DEFINE BSS MEMORY CONFIG X
 FRM=1000, NUMBER OF 4K FRAMES X
 CMB=100, NUMBER OF 4K COMMON BLOCKS X
 ECBS=50, NUMBER OF 12K ECBS X
 IOB=2500, NUMBER OF I/O BLOCK X
 SWB=700, NUMBER OF 4K COMMON BLOCKS X
 FRM1MB=220, number of 1 megabyte frames X
 PEH=1, preallocated ecb heap X
 HAVL1=0, ecb heap available list 1 X
 HAVL2=0, ecb heap available list 2 X
 HAVL3=0, ecb heap available list 3 X
Chapter 9. Other System z Operating Systems 195

 HAVL4=0, ecb heap available list 4 X
 PPA=1, preallocated EPA X
 PES=16, pre-allocated stack X
 SHP=12, PRE-ALLOCATED 31BIT SYSTEM HEAP X
 SHA=0, PRE-ALLOCATED 64BIT SYSHEAP AREA X
 VFAMIN=10, MINIMUM VFA X
 VFAMAX=0, MAXIMUM VFA X
 DBA=1 dump buffer area
 CORREQ MEMCONFIG=IBMBASMC, DEFINE BAS MEMORY CONFIGURATION X
 FRM=7000, NUMBER OF 40 BYTE I/O BLOCKS X
 CMB=250, NUMBER OF 4K COMMON BLOCKS X
 ECBS=300, NUMBER OF 12K ECBS X
 IOB=2700, NUMBER OF I/O BLOCK X
 SWB=1250, NUMBER OF 4K COMMON BLOCKS X
 FRM1MB=500, number of 1 megabyte frames X
 PEH=16, preallocated ecb heap X
 HAVL1=64, ecb heap available list 1 X
 HAVL2=16, ecb heap available list 2 X
 HAVL3=16, ecb heap available list 3 X
 HAVL4=2, ecb heap available list 4 X
 PPA=1, preallocated EPA X
 PES=16, pre-allocated stack X
 SHP=20, PRE-ALLOCATED 31BIT SYSTEM HEAP X
 SHA=0, PRE-ALLOCATED 64BIT SYSHEAP AREA X
 VFAMIN=10, MINIMUM VFA X
 VFAMAX=0, MAXIMUM VFA X
 DBA=1 dump buffer area
 CORREQ MEMCONFIG=IBM8GIG, DEFINE BSS MEMORY CONFIG X
 FRM=9000, NUMBER OF 4K FRAMES X
 CMB=500, NUMBER OF 4K COMMON BLOCKS X
 ECBS=1200, NUMBER OF 12K ECBS X
 IOB=7500, NUMBER OF I/O BLOCK X
 SWB=30000, NUMBER OF 4K COMMON BLOCKS X
 FRM1MB=1200, number of 1 megabyte frames X
 PEH=20, preallocated ecb heap X

 (many, many lines omitted)

196 IBM zPDT Reference and Guide

Chapter 9. Other System z Operating Systems 197

198 IBM zPDT Reference and Guide

Chapter 10. Multiple instances and guests

zPDT supports both guest operations (under z/VM) and multiple instances of zPDT. Both are
ways to run multiple z/OS or other operating systems.

In this chapter we present basic information about the use of multiple zPDT instances.
Practical operation with multiple instances can become complex. You might need to work with
your zPDT provider to clarify usage of more complex configurations.

See additional notes elsewhere about multiple instances using LANs and using cryptographic
adapter functions.

10.1 Multiple instances or guests

We strongly suggest that you use a single zPDT instance, as described in this document, to
become familiar with basic zPDT operation. Also, you cannot exceed the number of zPDT
licenses in your token (or tokens, or license server). The total number of zPDT licenses
applies whether the zPDT CPs are in a single instance or spread over multiple instances.

Multiple instances means running more than one copy of zPDT. Each instance must run
under a different Linux userid. This can be accomplished by logins through Telnet (or SSH) or
by careful use of su commands from different windows on the Linux desktop. The .bashrc file
of each userid must have the appropriate export statements as described in “Alter Linux files”
on page 103. Each instance must have its own devmap.

The use of TCP/IP interfaces is an essential part of this discussion. For this reason we
combine a discussion of multiple zPDT instances with the use of guests under z/VM in a
single instance. Our examples use OSD (QDIO) interfaces for TCP/IP. It is possible to use
OSE interfaces (non-QDIO) for TCP/IP; however, in the case of multiple instances using OSE
(through a single emulated OSA) you must configure the OSA Address Table (OAT) using the
OSA/SF utility.

10
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 199

10.2 Multiple guests in one instance

A typical z/VM configuration is outlined in Figure 10-1. z/VM itself typically “owns” all the 3270
sessions. Guests (z/OS, CMS) acquire a 3270 when a user logs on to the guest or uses a
DIAL command.

Figure 10-1 Guests in a single zPDT instance

Each guest (under z/VM) can access a LAN interface. The awsosa device manager can
handle up to 16 of these “stacks”. An awsosa device manager using a tunnel to Linux can be
used, as shown in the illustration. Each z/VM guest uses different IP addresses on each OSA
interface. Alternatively, not shown in the illustration, z/VM could establish an internal
VSWITCH for guest use. Using the IP address patterns from our other examples, we might
have the following addresses in Figure 10-1:

192.168.1.80 Linux IP address for the Ethernet adapter
192.168.1.80 port 3270 address for external TN3270e connections to aws3274
10.1.1.1 Linux IP address for the tunnel interface
192.168.1.81 z/VM IP address for Ethernet
10.1.1.2 z/VM IP address for the tunnel interface
192.168.1.82 z/OS #1 address for Ethernet
10.1.1.3 z/OS #1 address for the tunnel interface
192.168.1.83 z/OS #2 address for Ethernet
10.1.1.4 z/OS #2 address for the tunnel interface
127.0.0.1 localhost connection for local x3270 sessions

10.3 Independent instances

We can have two independent zPDT instances, meaning that emulated I/O devices are not
shared between the instances. In common terms, there is no shared DASD (or any other
shared device).

Ethernet adapter

Linux Linux TCP/IP

awsosa awsosa

z/VM

zPDT

aws3274

3270 session

3270 session

z/OS guest

z/OS guest

3270 session

TCP/IP

TCP/IP

tunnel

aws3274 emulates multiple local 3270s.
z/VM usually “owns” these and they
connect to guests via the “dial” command

awsosa supports multiple TCP/IP stacks
200 IBM zPDT Reference and Guide

Figure 10-2 Independent instances

In this example, we assume three zPDT licenses (and a base Linux machine with at least four
cores) and we have assigned two CPs (a CP and a zIIP) to one instance and one CP to the
other instance. Notice that different port numbers are needed in the 3270port statements in
the devmaps. Emulated device addresses (device numbers) are independent between the
instances and both might use the same addresses, as described here.

Each emulated OSA requires its own Ethernet adapter, and two adapters are necessary in
this case. Two emulated OSAs cannot share an Ethernet adapter. This example usesLCS
(non-QDIO) mode for both instances, but they could both be QDIO or a mixture of LCS and
QDIO.1 The following devmaps create a tunnel interface for only one of the instances simply
to illustrate that quite different configurations are possible for independent instances.

Simplified devmaps, matching Figure 10-2, might be as follows:

(file /home/ibmsys1/aprof1)
[system]
memory 3000m # emulated zSeries to have 3000 MB memory
3270port 3270 # tn3270e connections specify this port
processors 2 cp ziip # one CP and one zAAP

[manager]
name awsckd 0001 # define a single 3390 disk
device 0a80 3390 3990 /z/SARES1

[manager]
name aws3274 0003 # define two local 3270s
device 0700 3279 3274 mstcon
device 0701 3279 3274 tso

[manager]

1 Because each instance has its own OSA, the user is not required to do OAT configuration if the user uses the
default OAT definitions.

Ethernet adapter Ethernet adapter

zPDT instancezPDT instance

Linux Linux TCP/IP

VTAM (local)
VTAM (local)

z/OS z/OS

TCP/IP TCP/IP

awsosa awsosa

aws3274aws3274

awsosa
awsosa

tunnel

local 3270
local 3270

local 3270

local 3270

tunnel

emulated DASD can be shared

CHPID F0 CHPID F1

zPDTzPDT
Chapter 10. Multiple instances and guests 201

name awsosa 00C0 --path=F0 --pathtype=OSE
device E20 osa osa --unitadd=0
device E21 osa osa --unitadd=1

[manager]
name awsosa 00A0 --path A0 --pathtype=OSE --tunnel_intf=y
device E22 osa osa --unitadd=0
device E23 osa osa --unitadd=1

(file /home/ibmsys2/profSB)
[system]
memory 4000m # emulated zSeries to have 4GB memory
3270port 3271 # tn3270e connections specify this port
processors 1

[manager]
name awsckd 0001 # define a single 3390 disk
device 0a80 3390 3990 /z/SA9999
device 0200 3390 3990 /z/VMBASE

[manager]
name aws3274 0003 # define two local 3270s
device 0700 3279 3274 L700
device 0701 3279 3274 L701

[manager]
name awsosa 0123 --path=F1 --pathtype=OSE
device E20 osa osa --unitadd=0
device E21 osa osa --unitadd=1

Startup for these instances, working from the Linux desktop, might go as follows:

(login as root; open a terminal window)
xhost + allow multiple users to start x3270
su ibmsys1
$ cd /home/ibmsys1
$ awsstart aprof1 working as ibmsys1
 (startup messages) ibmsys1 instance
$ x3270 -port 3270 mstcon:localhost & working as ibmsys1
$ x3270 -port 3270 tso:localhost & working as ibmsys1
$ ipl a80 parm 0a8200 working as ibmsys1, IPL z/OS
 (open another terminal window)
su ibmsys2
$ cd /home/ibmsys2
$ awsstart profSB working as ibmsys2
 (startup messages) ibmsys2 instance
$ x3270 -port 3271 localhost & working as ibmsys2
$ x3270 -port 3271 localhost & working as ibmsys2
$ ipl 200 working as ibmsys2, IPL VM

Each instance is started with its own devmap. Each devmap must specify a different port
address for local 3270 connections. Each instance must specify different emulated disk
volumes. Attempting to share an emulated disk volume in this situation (by specifying the
same Linux file for the emulated volume) might result in corrupted data on the volume.
202 IBM zPDT Reference and Guide

The use of xhost + presents a security exposure; you should tailor this command to suit your
security environment

10.4 Instances with shared I/O

A possibility is for multiple instances to share certain devices, such as emulated DASD and
emulated OSA. Also, a single pool of 3270 devices can be used and accessed via a common
Linux port number, although this option has more complex side effects. The most common
use of a shared configuration is to provide shared DASD among the instances.

zPDT does not support the VMAC function of z/OS. The only virtual MAC supported is
generated on z/VM with the layer-2 vswitch.

A configuration with shared I/O devices requires a group controller; see Figure 10-3. The
group controller is similar to another zPDT instance, but without an associated CP or memory.
The group controller must have its own Linux userid, its own devmap, and be started with its
own awsstart command. It must be started before other instances are started. As a basic
concept, the I/O devices defined in the group controller’s devmap are inherited and shared by
the other instances.

Figure 10-3 Shared emulated I/O

Linux

awsosa awsosa

Local x3270 sessions

aws3274

Local x3270 sessions

aws3274

Local x3270 sessions

CP

z/OS

TCP/IP

ibmsys1

zPDT Instance

CP

z/OS

TCP/IP

ibmsys2

zPDT Instance

Private
DASD

Linux TCP/IP

Shared
DASD

Private aws3274

Shared

aws3274

Tunnel

aws3274
Group

Controller

ibmgroup

Ethernet adapter
Chapter 10. Multiple instances and guests 203

The Linux userid associated with the group controller must have the proper path information
set in the .bashrc file, just like that for the userids associated with each instance. All the
userids involved (the group controller and the instances) must be in the same Linux group;
this is group ibmsys in our examples. All of the emulated volume files must be readable and
writable (possibly via the groupid) by all the userids involved.2 For our example, assume we
have three userids defined (ibmgroup, ibmsys1, and ibmsys2) and all are in group ibmsys. We
can define three devmaps, as follows:

/home/ibmgroup/group1
[system]
members ibmsys1 ibmsys2 # userids for the instances

[manager]
name awsckd 8765 --shared
device A80 3390 3990 /z/Z9RES1
device A81 3390 3990 /z/Z9RES2
device A82 3390 3990 /z/Z9SYS1
device A83 3390 3990 /z/Z9RES3
device A84 3390 3990 /z/Z9USS1
device A90 3390 3990 /z/SARES1

[manager]
name awsosa 1223 path=F0 --pathtype=OSD
device 400 osa osa --unitadd=0
device 401 osa osa --unitadd=1
device 402 osa osa --unitadd=2
device 403 osa osa --unitadd=3
device 404 osa osa --unitadd=4
device 405 osa osa --unitadd=5
device 406 osa osa --unitadd=6
device 407 osa osa --unitadd=7

/home/ibmsys1/aprof1
[system]
memory 800m
3270port 3270
processors 1
group ibmgroup #userid of the group controller

[manager]
name aws3274 4455
device 0700 3279 3274 mstcon
device 0701 3279 3274

/home/ibmsys2/aprofSB
[system]
memory 1000m
3270port 3271
processors 2
group ibmgroup #userid of the group controller

[manager]
name aws3274 5544

2 This is controlled by normal Linux permission settings for each file. For example, the command chmod g+w /z/*
could be used to make all the files in directory /z writable by members of the current group.
204 IBM zPDT Reference and Guide

device 0700 3279 3274 mstcon
device 0701 3279 3274

Notice the two new devmap statements in this example. Both are in the [system] stanzas:

� members name1 name2 is used in the group controller definitions and specifies the Linux
userid associated with each instance in the group.

� group cntlname is used in each instance and specifies the Linux userid associated with
the group controller.

TN3270e sessions are directed to the desired instance by using the appropriate 3270port
number:

$ x3270 -port 3270 localhost & connects to the ibmsys1 instance
$ x3270 -port 3271 localhost & connects to the ibmsys2 instance

There is no need to coordinate device numbers or unit addresses among multiple instances
using shared OSA. For example, each instance might use an OSA interface at addresses
400-403. Each instance might start unit addresses (specified in the devmap) at address zero.
(Multiple guests under z/VM, in a single instance, must manage the addresses properly. Do
not confuse multiple guests under z/VM with multiple instances.)

Only DASD (CKD or FBA), aws3274, and OSA can be shared. Additional devices, such as
tape drives, can be included in the group controller devmap. These additional device
definitions are inherited by all instances, but each instance uses the definitions as though
they were part of the devmap for that instance. Notice that the two instances in the previous
example have different 3270port addresses. We elected to not use shared 3270 definitions in
this example.3 No DASD is defined for the instances in this example; the instances will share
the DASD defined for the group controller.

All sharing instances use the same addresses (device numbers) for the shared devices.
There is no provision to have different addresses (for different instances) for the same shared
device.

If a zPDT instance operates under the group controller, then any OSA devices might be
shared devices, managed by the group controller, or each instance may have a private OSA.
If the OSA is used in OSE (non-QDIO mode) then the OAT definitions must be customized
with the names of the instance members (specified as “MEMBER names”) and the IP
address(es) for each instance.

Standard operating rules still apply, of course. We cannot IPL the same z/OS system into two
instances at the same time.4 In our small example, we have two z/OS systems (the second
one is on the SARES1 volume provided with the AD-CD package). In the absence of shared
ENQ functions5, you must manage any active data set sharing. The zPDT system correctly
emulates disk RESERVE and RELEASE functions and these protect VTOC, catalog, and
some other updates in the normal z/OS manner.

Startup for our controller and two instances, working from the Linux desktop, might go as
follows:

(login as root; open a terminal window)
xhost + allow multiple users to start x3270

3 An example using a single 3270 port number is given later in the text.
4 This statement ignores situations where the use of different PARMLIB members allows an IPL of the same z/OS in

multiple LPARs or instances. This involves separate paging, spooling, and various VSAM data sets for each LPAR
or instance. The z/OS AD-CD system used for many of our examples is not configured for this type of use.

5 Sharing ENQ/DEQ functions is typically done by the GRS functions of a sysplex configuration. We do not have a
sysplex here and there are no global ENQ/DEQ controls.
Chapter 10. Multiple instances and guests 205

su ibmgroup work as group controller
$ cd /home/ibmgroup
$ awsstart group1 start group controller

(startup messages)
(open another terminal window)
su ibmsys1
$ cd /home/ibmsys1
$ awsstart aprof1 working as ibmsys1
 (startup messages) ibmsys1 instance
$ x3270 -port 3270 mstcon@localhost & working as ibmsys1
$ x3270 -port 3270 tso@localhost & working as ibmsys1
$ ipl a80 parm 0a8200 working as ibmsys1, IPL z/OS
(open another terminal window)
su ibmsys2
$ cd /home/ibmsys2
$ awsstart profSB working as ibmsys2
 (startup messages) ibmsys2 instance
$ x3270 -port 3271 mstcon@localhost & working as ibmsys2
$ x3270 -port 3271 tso@localhost & working as ibmsys2
$ ipl a90 parm 0a90sa working as ibmsys2, IPL z/OS

In this example, we used a different terminal window to start the group controller and each
z/OS instance. This allows us to send commands (such as awsstop) to the appropriate
application later.

10.5 Additional shared functions

The previous section outlines the key shared device usage rules, as they apply to DASD and
OSA devices. The group controller can also include a shared aws3270 function and passive
definitions that are inherited by all instances.

Shared aws3270 options

The group controller devmap can include aws3270 definitions such as in this example:

/home/ibmgroup/group1
[system]
3270port 3270
members ibmsys1 ibmsys2

[manager]
name aws3270 1234
device 700 3279 3274 mstcon
device 701 3279 3274
device 702 3270 3274

In this case the group controller has specified a port address for TN3270e connections. Each
instance inherits the complete set of 3270 device definitions (700, 701, 702) but not the
3270port address. That is, each instance has a 3270 at address 700, 701, and so forth. If a
user starts a TN3270e session connected to the 3270port number on Linux, the user has
several options:

$ x3270 -port 3270 localhost & Example 1
$ x3270 -port 3270 ibmsys1@localhost & Example 2
$ x3270 -port 3270 ibmsys2.701@localhost & Example 3
206 IBM zPDT Reference and Guide

$ x3270 -port 3270 ibmsys1.mstcon@localhost & Example 4

In Example 1, the desired instance is not specified. In this case, the group controller displays
a selection menu (on the new 3270 session) and you must indicate which instance you want
and, optionally, which terminal in that instance.6 This selection menu is illustrated in
Figure 10-4.

In Example 2, the first available 3270 in the ibmsys1 instance is assigned. (The instance
name corresponds to the Linux userid that started the instance.) Examples 3 and 4 specify
both an instance name and the 3270 device identifier.

Figure 10-4 Selection menu with two instances running

As a reminder, you can specify a different 3270port number and aws3274 device definitions
in each instance. In this case the shared aws3274 conditions do not apply. You can specify a
3270port number and aws3274 devices in the group controller and also specify aws3274
devices in each instance (but without a 3270port number in the instances). In this case all the
3270 devices (from the controller list that is inherited by all instances, and from the unique list
in each instance) can be accessed from the selection menu.

Yet another option exists for accessing shared aws3274 functions. This involves an inetd
service that automatically detects which 1090 instances are running and constructs a
selection menu based on this information. The inetd setup varies with different Linux
distributions.

Inherited devices
The group controller devmap can include definitions for device managers other than awsckd,
awsfba, awsosa, and aws3270, as in the following example:

/home/ibmgroup/group1
[system]
membersibmsys1 ibmsys2

[manager]
name awstape 4444
device 580 3480 3480
device 581 3480 3480

In this case, each instance (ibmsys1 and ibmsys2) will have emulated 3480 tape drives at
addresses 580 and 581. There is no connection between these drives in the two instances. It
is exactly as though the awstape stanza appeared in the devmaps for each instance. The
sole purpose is to remove the necessity for defining these devices for each instance. This is
not very meaningful for a small device list as shown here, but might be more meaningful for
longer lists.

6 If a specific terminal within the instance is not specified (by address, or by LU name) then the first available 3270 in
that instance is used.

*** Welcome to the zPDT selection menu ***
Please select the member to connect from the list below
or type in the member and/or LU name and depress ENTER

Selection => __ (0 to disconnect) MEMBER:________ LU:________
 1) IBMSYS1
 2) IBMSYS2
Chapter 10. Multiple instances and guests 207

208 IBM zPDT Reference and Guide

Chapter 11. The awscmd command

The awscmd device manager provides a “device” that appears to z System software as a
tape drive. Its function is to send a command (and possibly data) to the underlying Linux and
then receive the output from the Linux command. Any Linux command may be sent, including
those that could destroy the Linux system. Obviously, this device manager should be used
with care and might not be appropriate for a zPDT environment that can be accessed by
untrusted users.

Configuration is similar to other device managers:

[manager]
name awscmd 20
device 560 3480 3480

The CUNUMBR (which is 20 in this example) is an arbitrary hexadecimal number (up to four
hex digits) that cannot duplicate the CUNUMBR used with any other device manager.
Typically only one device is used. The device type can be 3420, 3422, 3480, 3490, or 3590;
these are the tape device types emulated by zPDT. The device number (560 in the example)
must match a corresponding device type in your z/OS IODF. (Any device number may be
used with z/VM.)

The intended operation is as follows:

1. A rewind is issued to the device.

2. The desired Linux command (expressed in EBCDIC) is written to the device.

3. Any stdin data to be used by the Linux command is written to the device.

4. EBCDIC to ASCII translation is done automatically; binary data is not possible.

5. A tape mark is written to the device.

6. At this point, the awscmd device manager submits the command (and data) to Linux
through a shell that does not appear in the Linux window. The Linux current directory for
the command is the directory that was used to start zPDT.

7. When the awscmd function completes there are four files on the pseudo-tape device:

– The command file that was submitted to Linux (with redirection operands that were
automatically added by awscmd)

11
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 209

– The stdout data from the Linux command
– The stderr data from the Linux command
– The return code (converted to characters) from the Linux command

8. The output (on the pseudo-tape) has been converted to EBCDIC.

9. Two tape marks are at the end of the pseudo-tape.

Restrictions
The command you send to Linux cannot include any redirection (< or > characters),
asynchronous indicator (ampersand (&) character), or pipe (“|” or vertical bar character). The
pseudo-tape device appears to be busy while Linux is executing the command. Any Linux
command that creates substantial delays (of many seconds) may cause I/O timeout errors to
be generated in z/OS.

At the time of writing, the following characters did not survive the conversion from EBCDIC to
ASCII when included in SYSIN data:

� Tilde (~)
� Caret (^)
� Colon (:)
� Double quotation marks (")
� Less than (<)
� Greater than (>)
� Question mark (?)

11.1 Sample z/VM script

The following REXX script assumes that the awscmd device is attached to the CMS user as
device 28F:

/* CMS REXX script to execute a Linux command */
/* */
/* format: */
/* oscmd Linux-command (tape-address */
/* */
/* The tape-address is optional; defaults to 28F */
/* */
 Trace off;
 Parse arg cmd '(' tDev;
 if (length(tDev) = 0)
 then tDev = 28F;
/* Write the Linux command string to the tape */
 “tape rew (“ tDev;
 “pipe var cmd | tape” tDev;
 “tape wtm (“ eDev;
/* Read the stdout file from the tape */
 “tape rew (“ tDev;
 “tape fsf (“ tDev; /* skip over input file */
 say “STDOUT output------”
 “pipe tape” tDev “| console”;
/* Read the stderr file from the tape */
 “say “STDERR output ------”
 “pipe tape” tDev “| console”
/* Read the return code from the tape */
210 IBM zPDT Reference and Guide

 “pipe tape” tDev “| console”
/* end this script */
 return(0);

This script could be used from z/VM as follows:

att 280 * 28f (attach the awscmd pseudo device)
TAPE 0280 ATTACHED TO ZVMTEST 028F
Ready;
oscmd ls -al
STDOUT output-------
total 21699469
drwxrwxr-x 2 zvmtest zvmtest 4096 Aug 7 20:51 .
drwdr-xr-x 8 zvmtest zvmtest 4096 Aug 7 20:37 ..
-rw-rw-r-- 1 zvmtest zvmtest 2846431232 Jul 8 09:58 530OPT.ckd
-rw-rw-r-- 1 zvmtest zvmtest 2846431232 Jul 8 10:08 530PAG.ckd
 (etc to list all the entries in the current Linux directory)
STDERR output----
COMMAND return code ----
0
Ready;

11.2 z/OS use

Using the awscmd device with z/OS is more challenging than using it with z/VM for several
reasons:

� Tape drives are not readily manipulated by TSO users.
� z/OS wants to check tape volumes for labels, even if you specify a no-label tape volume.
� For practical purposes, an assembly program must be written to use the awscmd functions.

You can write your own program. You might want to examine the sample program we have
provided in 11.2.1, “Sample z/OS program for awscmd” on page 212. This program looks for
a PARM field on the EXEC JCL statement and sends this field as the command to Linux. If no
PARM field is present, it opens DDname SYSIN and sends the first data line as the Linux
command and sends any additional data lines as stdin for the Linux command. Output from
the awscmd is printed on DDNAME SYSPRINT. A JCL DD statement is needed to allocate the
pseudo-tape drive for awscmd. Our example uses address 560 for the pseudo-tape because
this is a known 3480 address for our z/OS system.

Our devmap contains these lines:

[manager]
name awscmd 20
device 560 3480 3480

Our sample program requires that an MVS initiator be enabled for BLP1 processing. This can
be done by changing the JES2 startup parameters or (for the duration of an IPL) by entering
the following command on the MVS console:

$T JOBCLASS(A),BLP=YES (you might want to use jobclass other than A)

We then mount a tape on the pseudo-tape drive for continued use. This avoids having to
respond to a mount message every time the sample program is run.

MOUNT 560,VOL=(NL,123456)
1 BLP means Bypass Label Processing; this prevents z/OS from testing for a standard label on the tape.
Chapter 11. The awscmd command 211

The MVS mount command followed by the zPDT ready command provides the necessary
setup:

$ ready 560

An example of using the sample program might be this:

//OGDEN22 JOB 1,OGDEN,MSGCLASS=X,MSGLEVEL=(0,0)
// EXEC PGM=AWSCMDX,PARM='ls -al '
//STEPLIB DD DSN=OGDEN.LIB.LOAD,DISP=SHR
//TAPE DD UNIT=(560,,DEFER),VOL=SER=123456,LABEL=(1,BLP),DSN=X
//SYSPRINT DD SYSOUT=*

The output (viewed from JES2 spool using SDSF) contains the usual JES2 messages and a
SYSOUT data set such as the following example:

COMMAND: ls -al 1>/tmp/AWSCMD-xxx-out.txt 2>/tmp/etc.xxetc
</tmp/AWSCMD.xxxetc
STDOUT: total 21699469
STDOUT: drwxrwxr-x 2 ibmsys1 ibmsys1 4096 Aug 1 20:01 .
STDOUT: drwdr-xr-x 4 ibmsys1 ibmsys1 4096 Aug 1 20:02 ..
STDOUT: -rw-rw-r-- 1 ibmsys1 ibmsys1 2846431232 Aug 8 09:58 WORK01
STDOUT: -rw-rw-r-- 1 ibmsys1 ibmsys1 2846431232 Aug 8 10:08 WORK02
 (etc to list all the entries in the current Linux directory)
STDERR:
RTNCDE: 0

The Linux command that is actually executed contains redirection operators that are
automatically added by awscmd. You can see these operators in the output listing; they are
only suggested in the sample output shown here.

A second example, using SYSIN data to create a new Linux file, could be this:

//OGDEN22 JOB 1,OGDEN,MSGCLASS=X,MSGLEVEL=(0,0)
// EXEC PGM=AWSCMDX
//STEPLIB DD DSN=OGDEN.LIB.LOAD,DISP=SHR
//TAPE DD UNIT=(560,,DEFER),VOL=SER=123456,LABEL=(1,BLP),DSN=X
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
tee my.new.file
This is a line of data for the new file
This is another line of data
And yet another
/*

This example creates Linux file my.new.file (in the Linux directory used to start zPDT) with
the indicated lines in the file. A fully qualified Linux file name could be used with either of the
examples. The output for the second example would list all the data lines with the COMMAND
output and then list them again for STDOUT output. (This is because tee writes all the stdin
data to stdout. The tee command appends the new data if the specified file already exists.)

11.2.1 Sample z/OS program for awscmd

The following listing is a z/OS batch program, AWSCMDX, that exploits the awscmd
command processor to send a command to the underlying Linux and receive the results. This
sample program is simple-minded in many respects and is not intended to illustrate the best
programming techniques, but it should be fairly readable. Errors result in WTO messages;
this is a poor design for significant applications but it should be reasonable for many zPDT
212 IBM zPDT Reference and Guide

environments. The program includes a two-second wait before reading the results of the
Linux command. This wait is not necessary and can be removed. (The pseudo-tape device
remains busy with the preceding WTM operation until the Linux command completes.)

The TSO test environment options (in the compile and link steps) are not required.

//OGDEN90 JOB 1,OGDEN,MSGCLASS=X
// EXEC ASMACLG,PARM.C='NOXREF,TEST',PARM.L='NOLIST,NOMAP,TEST'
//* PARM.G='ls -al '
//C.SYSIN DD *
 PRINT NOGEN
*
* SEND COMMAND TO LINUX VIA AWSCMD, READ THE RESULT
* JES2 MUST ALLOW BLP FOR THE JOB CLASS THAT IS USED
*
* $T JOBCLASS(A),BLP=YES CAN BE USED FOR TEMPORARY CHANGES
*
* MOUNT 580,VOL=(NL,123456)
* awsmount 580 -o /z/123456
*
*
*//TAPE DD UNIT=(580,,DEFER),LABEL=(1,BLP),VOL=SER=XXXXXX,DSN=X
//SYSPRINT DD SYSOUT= (OUTPUT FROM LINUX)
*
AWSCMDX CSECT
 STM 14,12,12(13) SAVE CALLER’S REGISTERS
 LR 12,15 USE ENTRY-POINT BASE REGISTER
 USING AWSCMDX,12
 ST 13,SAVEAREA+4 CALLER’S SAVEAREA ADDRESS
 LA 2,SAVEAREA MY SAVEAREA ADDRESS
 ST 2,8(13) STORE A(MY SAVE AREA) IN CALLER
 LR 13,2 MY SAVEAREA IN R13
 LR 11,12 SECOND BASE REGISTER
 A 11,=F'4096'
 USING AWSCMDX+4096,11 NOT REALLY NEEDED
* CHECK PARM DATA
 L 1,0(1) GET ADDRESS OF PARM FIELD
 LH 2,0(1) GET LENGTH OF PARM FIELD
 LTR 2,2 CHECK IT
 BZ NOPARM BRANCH IF LENGTH = ZERO
 BCTR 2,0 SUBTRACT 1 FROM LENGTH
 EX 2,MOVPARM MOVE PARM TO MY WORK AREA
 B A GO USE PARM DATA
* TRY SYSIN FOR THE INPUT DATA
NOPARM OPEN (SYSIN,(INPUT))
 TM SYSIN+48,X'10' DID OPEN WORK?
 BZ NOINPUT IF NOT, BRANCH
 MVI PARMFLG,X'FF' REMEMBER TO USE SYSIN
* OPEN PSEUDO-TAPE DEVICE AND SYSPRINT
A OPEN STAPEO ASSUME BLP ON DD STATEMENT
 TM STAPEO+48,X'10' DID OPEN WORK?
 BZ ERR10 IF NOT, BRANCH
A10 OPEN (PRINT,(OUTPUT))
 TM PRINT+48,X'10' DID OPEN WORK?
 BZ ERR11
* REWIND THE PSEUDO TAPE
B MVI SECB,X'00' ZERO MY ECB
 LA 1,SCCREW ADDRESS of CCW(S)
 ST 1,SIOB+16 PLACE IN IOB
 EXCP SIOB REWIND TAPE
 WAIT ECB=SECB WAIT FOR IT
Chapter 11. The awscmd command 213

 TM SECB,X'20' COMPLETED OK?
 BZ ERR1 IF NOT, BRANCH
* PREPARE TO WRITE THE COMMAND RECORD
C CLI PARMFLG,X'00' USING PARM DATA?
 BE C2 IF SO, BRANCH
C1 GET SYSIN,BUFFER READ RECORD FROM SYSIN
* BACKSCAN TO REMOVE TRAILING BLANKS
C2 LA 3,BUFFER+99 MAX 100 BYTES
C3 CLI 0(3),C' ' A BLANK?
 BNE C4 IF NOT, BRANCH
 S 3,=F'1' BACK UP 1 IN BUFFER
 B C3 LOOP UNTIL NON-BLANK FOUND
C4 LA 4,BUFFER A(BEGINNING OF BUFFER)
 LA 3,1(3) ADJUST FOR LAST CHARACTER
 SR 3,4 A(1 PAST LAST NON-BLANK) - A(BEGINNING)
 BP C5 IF POSITIVE, BRANCH
 LA 3,1 IF NOT, MAKE LENGTH = 1 BYTE
C5 STH 3,SCCWRITE+6 CHANGE CCW LENGTH FIELD
 MVI SECB,X'00' ECB
 LA 1,SCCWRITE CCW
 ST 1,SIOB+16 IN IOB
 EXCP SIOB WRITE RECORD
 WAIT ECB=SECB WAIT
 TM SECB,X'20' OK?
 BZ ERR2 IF NOT, BRANCH
 CLI PARMFLG,X'00' USING PARM DATA?
 BE D IF SO, BRANCH
 MVC BUFFER(132),BLANKS
 B C1 LOOP TO GET ALL SYSIN DATA
* WRITE A TAPE MARK
D MVI SECB,X'00' ECB
 LA 1,SCCWTM CCW
 ST 1,SIOB+16 IN IOB
 EXCP SIOB WRITE TAPE MARK
 WAIT ECB=SECB WAIT
 TM SECB,X'20' OK?
 BZ ERR3 IF NOT, BRANCH
 B EE
*
* WAIT AN ARBITRARY TWO SECONDS (CAN BE REMOVED)
*
EE STIMER WAIT,BINTVL=SEC2
*
* REWIND THE TAPE
E MVI SECB,X'00' ZERO ECB
 LA 1,SCCREW CCW
 ST 1,SIOB+16 IN IOB
 EXCP SIOB REWIND TAPE
 WAIT ECB=SECB WAIT
 TM SECB,X'20' OK?
 BZ ERR4 IF NOT, BRANCH
* READ FIRST FILE
F MVC BUFFER2(80),BLANKS
 MVC BUFFER2+0080(80),BLANKS
 MVC BUFFER2+0160(80),BLANKS
 MVI SECB,X'00' ZERO THE ECB
 LA 1,SCCREAD ADDRESS of CCW(S)
 ST 1,SIOB+16 PLACE IN IOB
 EXCP SIOB READ
 WAIT ECB=SECB WAIT FOR IT
214 IBM zPDT Reference and Guide

 TM SECB,X'20' COMPLETED OK?
 BO F1 IF YES, BRANCH
 TM SIOB+12,X'01' TAPE MARK?
 BO G IF YES, BRANCH
 B ERR5
F1 MVC BUFFER(132),BLANKS
 MVC BUFFER(09),=C'COMMAND: '
 MVC BUFFER+09(120),BUFFER2
 PUT PRINT,BUFFER
 B F LOOP UNTIL ALL RECORDS READ
* READ SECOND FILE
G MVC BUFFER2(80),BLANKS
 MVC BUFFER2+0080(80),BLANKS
 MVC BUFFER2+0160(80),BLANKS
 MVI SECB,X'00' ZERO THE ECB
 LA 1,SCCREAD ADDRESS of CCW(S)
 ST 1,SIOB+16 PLACE IN IOB
 EXCP SIOB READ
 WAIT ECB=SECB WAIT FOR IT
 TM SECB,X'20' COMPLETED OK?
 BO G1 IF YES, BRANCH
 TM SIOB+12,X'01' TAPE MARK?
 BO H IF YES, BRANCH
 B ERR5
G1 MVC BUFFER(132),BLANKS
 MVC BUFFER(09),=C'STDOUT: '
 MVC BUFFER+09(120),BUFFER2
 PUT PRINT,BUFFER
 B G LOOP UNTIL ALL RECORDS READ
* READ THIRD FILE
H MVC BUFFER2(80),BLANKS
 MVC BUFFER2+0080(80),BLANKS
 MVC BUFFER2+0160(80),BLANKS
 MVI SECB,X'00' ZERO THE ECB
 LA 1,SCCREAD ADDRESS of CCW(S)
 ST 1,SIOB+16 PLACE IN IOB
 EXCP SIOB READ
 WAIT ECB=SECB WAIT FOR IT
 TM SECB,X'20' COMPLETED OK?
 BO H1 IF YES, BRANCH
 TM SIOB+12,X'01' TAPE MARK?
 BO J IF YES, BRANCH
 B ERR5
H1 MVC BUFFER(132),BLANKS
 MVC BUFFER(09),=C'STDERR: '
 MVC BUFFER+09(120),BUFFER2
 PUT PRINT,BUFFER
 B H LOOP UNTIL ALL RECORDS READ
* READ FOURTH FILE
J MVC BUFFER2(80),BLANKS
 MVC BUFFER2+0080(80),BLANKS
 MVC BUFFER2+0160(80),BLANKS
 MVI SECB,X'00' ZERO THE ECB
 LA 1,SCCREAD ADDRESS of CCW(S)
 ST 1,SIOB+16 PLACE IN IOB
 EXCP SIOB READ
 WAIT ECB=SECB WAIT FOR IT
 TM SECB,X'20' COMPLETED OK?
 BO J1 IF YES, BRANCH
 TM SIOB+12,X'01' TAPE MARK?
Chapter 11. The awscmd command 215

 BO K IF YES, BRANCH
 B ERR5
J1 MVC BUFFER(132),BLANKS
 MVC BUFFER(09),=C'RTNCDE: '
 MVC BUFFER+09(120),BUFFER2
 PUT PRINT,BUFFER
 B J LOOP UNTIL ALL RECORDS READ
*
K SR 1,1 NOP
*
CLOSE CLOSE (STAPEO,,PRINT)
RETURN L 13,4(13) GET A(CALLER’S SAVE AREA)
 LM 14,12,12(13) RESTORE CALLER’S REGISTERS
 SR 15,15 SET RETURN CODE
 BR 14 EXIT
*
* ERRORS AND MESSAGES
*
ERR1 MVC BUFFER(132),BLANKS
 MVC BUFFER(21),=C'Initial rewind failed'
 PUT PRINT,BUFFER
 B CLOSE
ERR2 MVC BUFFER(132),BLANKS
 MVC BUFFER(12),=C'Write failed'
 PUT PRINT,BUFFER
 B CLOSE
ERR3 MVC BUFFER(132),BLANKS
 MVC BUFFER(22),=C'Write tape mark failed'
 PUT PRINT,BUFFER
 B CLOSE
ERR4 MVC BUFFER(132),BLANKS
 MVC BUFFER(20),=C'Second rewind failed'
 PUT PRINT,BUFFER
 B CLOSE
ERR5 MVC BUFFER(132),BLANKS
 MVC BUFFER(17),=C'Read failed '
 PUT PRINT,BUFFER
 B CLOSE
ERR10 WTO 'NO TAPE DD STATEMENT'
 B RETURN
ERR11 WTO 'NO SYSPRINT DD STATEMENT'
 B CLOSE
NOINPUT WTO 'NO PARAMETER OR SYSIN FOUND'
 B RETURN
*
* CONSTANTS, WORK AREAS
*
SAVEAREA DC 18F'0'
SEC2 DC F'200' TWO SECONDS
STAPEO DCB DSORG=PS,MACRF=(E),DDNAME=TAPE
PRINT DCB DSORG=PS,DDNAME=SYSPRINT,MACRF=(PM),LRECL=132, X
 BLKSIZE=13200,RECFM=FB
SYSIN DCB DSORG=PS,DDNAME=SYSIN,MACRF=(GM),LRECL=80, X
 RECFM=FB,EODAD=D
 DS D'0' FOUR CCWs follow
SCCWRITE DC X'01',AL3(BUFFER),X'20',AL3(100)
SCCWTM DC X'1F',AL3(0),X'20',AL3(1)
SCCREW DC X'07',AL3(BLANKS),X'20',AL3(1)
SCCREAD DC X'02',AL3(BUFFER2),X'20',AL3(3200)
SECB DC F'0'
216 IBM zPDT Reference and Guide

SIOB DC X'42000000'
 DC A(SECB) A(ECB)
 DC 2F'0' CSW
 DC A(0) A(CCW)
 DC A(STAPEO) A(DCB)
 DC 2F'0'
*
PARM DC CL100' ' PARM CAN BE UP 100 CHARACTERS
PARMFLG DC X'00' 00=PARM, FF=SYSIN
MOVPARM MVC BUFFER(0),2(1) USED BY EX INSTRUCTION
BLANKS DC CL132' '
BUFFER DC CL132' '
 LTORG
BUFFER2 DS CL4000' '
 END
/*
//*.SYSLMOD DD DISP=OLD,DSN=OGDEN.LIB.LOAD(AWSCMDX)
//G.TAPE DD UNIT=(560,,DEFER),LABEL=(1,BLP),VOL=SER=123456,DSN=X
//G.SYSPRINT DD SYSOUT=*
//G.SYSIN DD *
tee xfile2
This is a line
This is line 2
This is line 3
/*
Chapter 11. The awscmd command 217

218 IBM zPDT Reference and Guide

Chapter 12. Minor z/OS notes

This chapter is not intended as a general z/OS guide, or as a guide to the AD-CD systems.
However, several common questions or problems are discussed here.

12.1 Maintenance for AD-CD z/OS systems

Users of the AD-CD z/OS systems have long requested a method of downloading PTFs. A
method is in place to allow bulk downloading of PTFs in a format somewhat equivalent to the
“PUT tapes” that were formerly used for z/OS maintenance. (These are no longer in tape
format, but the terminology remains. PUT stands for Program (or product) update tape.1)
These downloads are not provided by zPDT; they are provided by the AD-CD team. In
principle, anyone who has authority to download the z/OS AD-CD volumes from the IBM
Dallas site can also download the material described here.

This optional service provides software maintenance for all the products in the z/OS AD-CD
package. This service is for experienced z/OS systems programmers and is not intended for
casual AD-CD users. Most AD-CD users will elect to obtain z/OS product maintenance
through the periodic AD-CD releases as they have in the past. This facility might not be
appropriate for all zPDT users for two key reasons:

� The PUTs are large, typically in the range of 8 GB for each PUT. The PUTs are not
cumulative, meaning that you might need to download and maintain multiple PUT
releases.

� Substantial SMP/E skills are needed to use the materials. There are multiple ways the
material can be handled by the user and by SMP/E.

Each PUT is divided into several approximately 1 GB files on the Dallas site. These files
would normally be concatenated for use by z/OS.2 PUTs have names such as PUT1407
representing PUT number 7 for 2014.

The Dallas site is at this address:

12

1 “PUT tape” is redundant, because it means program update tape tape, but the terminology is often used. “PUT” and
“PUT tape” are used interchangeably.

2 Another option is to combine the files into a single DSNTYPE=LARGE data set.
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 219

https://dtsc.dfw.ibm.com/ocgi/pagebuilder?/web/httpd1/pagebuilder/zosmandl.dat

A user name and password are required; this user name is unique to the Dallas download site
and must be authorized for AD-CD z/OS downloads to be accessed. The Dallas group
intends to maintain eight PUT levels on this site, but circumstances might vary this number.
Navigating this site provides selection of various PUT levels, such as PUT1406 for example.
Selecting a PUT level lists the download files for that level, as in this example:

‘HTTPD1.fz206.f140.PUT1406.TRS1.BIN’
‘HTTPD1.fz206.f140.PUT1406.TRS2.BIN’
‘HTTPD1.fz206.f140.PUT1406.TRS3.BIN’
 etc

These can be download through your browser download function. We suggest you rename
the files when downloading them.3 We used names such as PUT1406.TRS1, PUT1406.TRS2,
and so forth. As an example, the PUT1406 files contain 999 PTFs in 78 million records, and is
typical of recent PUTs. The large size of these files is typically due to very large PTFs for
UNIX System Services programs, especially for Java functions.

At the time of writing, the first file in a PUT level is small and contains only ALIAS statements
for SMP/E. The remaining files tend to be large and are separated at PTF boundaries. After
the multiple files for a given PUT are downloaded to Linux, they should be transferred (with
FTP) to z/OS files in a specific format. The receiving z/OS file (from the FTP transfer) must be
RECFM=FB and LRECL=1024; the block size does not matter. The FTP transfer must be
binary. After transferring each file to z/OS, each must be processed by AMATERSE.

We found the easiest way is to download the PUT files is to allocate a single receiving data
set (RECFM=FB, LRECL=1024) for FTP. After each FTP we ran an AMATERSE job to
uncompress the data set and assign it a logical dataset name. The first data set in the PUT (in
the TRS1 file) contains SMP/E ALIAS statements and this data set is RECFM=VB,
LRECL=255. The remainder of the data sets (containing the PTFs) are RECFM=FB,
LRECL=80. The job we use is as follows:

//UNPK JOB 1,OGDEN,MSGCLASS=X
// EXEC PGM=AMATERSE,PARM=UNPACK
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DISP=SHR,DSN=OGDEN.PUTUP
//SYSUT2 DD DISP=(NEW,CATLG),UNIT=3390,VOL=SER=WORK09,
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=8000), for PTF files
// SPACE=(CYL,(1500,50),RLSE),DSN=PUT1406.TRS2
//* DCB=(LRECL=255,RECFM=VB,BLKSIZE=8000) for TRS1 file only

We use FTP to transfer a file from Linux to OGDEN.PUTUP (which was allocated with 1500
cylinders, RECFM=FB, LRECL=1024); we then alter the AMATERSE job to have the right
output data set name, and run the job. We repeat this cycle for all the files in the PUT. The
final result is a series of data sets, PUT1406.TRS1, PUT1406.TRS2, and so forth. For a different
PUT level we create a new high level qualifier, such as PUT1407 and so forth.

12.2 z/OS CP and memory display

The z/OS d m=cpu and d m=stor commands display information similar to the following
examples:

3 The single quotation marks are part of the file names on the download site. These single quotation marks must be
“escaped” when used as Linux file names and it is best to avoid this complication.
220 IBM zPDT Reference and Guide

https://dtsc.dfw.ibm.com/ocgi/pagebuilder?/web/httpd1/pagebuilder/zosmandl.dat

d m=cpu
ID CPU SERIAL
00 + 000971090
CPC SI = 1090.306.IBM.02.000000000000097

d m=stor
REAL STORAGE STATUS
ONLINE-NOT RECONFIGURABLE 0M-3500M

In the example, 1090 is the z System machine type and 00097 is the z System serial number
assigned by our 1090 USB hardware key. Each zPDT hardware key assigns a different z
System serial number.4

12.3 Excessive Health Checker messages

The Health Checker is started automatically under z/OS 2.1 and later version. It is a useful
tool, but it might check for details that are not relevant to zPDT users. As an example, when
running a parallel sysplex system5 we might see the following message on the MVS console:

05.38.33 S0W1 STC00783 HZS0002E CHECK(IBMXCF,XCF_CF_STR_NONVOLATILE):
 IXCH0222E A coupling facility structure user request for non-volatility
 and failure-isolation from connectors is not satisfied.

The message is repeated at intervals. You can delete this health check as follows:

1. In the AD-CD z/OS 2.1 system IBMUSER has only read access to the Health Checker
controls.6 You need update access. Issue the following commands (when logged on as
IBMUSER) in the ISPF option 6 panel:

PERMIT HZS.** CLASS(XFACILIT) ID(IBMUSER) ACC(CONTROL)
SETROPTS RACLIST(XFACILIT) REFRESH

2. Go the SDSF primary option menu and select option CK to access the Health Checker.
Scroll through checks looking at the Status column on the right of the screen. This column
contains text such as SUCCES, INACTI, and EXCEPT. Enter the letter “S” at the
beginning of any line to see more detail about it. The EXCEPT text means that the Health
Checker found a problem with this item.

3. Find the check for the NONVOLATILE condition and enter the letter “H” on the line to
make the check inactive or “P” to delete the check.

12.4 z/OS spin loop timeouts

A z/OS spinloop might time out and produce an S071 ABEND. This can be triggered by many
different circumstances. You can change this time value by creating or altering member
EXSPATxx in PARMLIB:

member EXSPAT00
SPINRCVY ABEND
SPINTIME=60

4 Or the serial number may be provided by a UIM server.
5 The parallel sysplex system is described in IBM Redbooks publication SG24-8386.
6 It appears that user ADCDMST has update access to the relevant IBM RACF® profile. You can log on with this

userid and skip the RACF change.
Chapter 12. Minor z/OS notes 221

The most common reasons for SPINLOOP problems are an overcommitted virtual
environment, disk cache writes when very large PC memory is used, or very high I/O rates
from multiple application tasks. In rare cases, a situation with Hyper-Threading has produced
SPINLOOP delays.

12.5 Larger 3270 display

The x3270 terminal emulator can be started with an optional parameter, as follows:

$ x3270 -port 3270 -oversize 133x60 localhost &

This produces a 3270 window with 133 columns and 60 lines. (Other sizes may be specified;
this is simply an example.) Basic TSO does not use the “extra” window space. ISPF can use
it if max is specified for the window format in the ISPF option 0 panel. (ISPF does not use the
extra width unless a data set being displayed or edited has records that can use the extra
width.)

12.6 z/OS disk STORAGE space

In some circumstances, z/OS functions use STORAGE volumes7 for disk allocations. The
distributed z/OS AD-CD systems generally have only a single STORAGE volume named
xxSYS1. For anything beyond trivial z/OS usage, we strongly recommend that at least one
additional 3390 volume should be defined and mounted as a STORAGE volume. A
STORAGE volume is created by statements in the VATLSTxx member in PARMLIB. For
example,

VATDEF IPLUSE(PRIVATE),SYSUSE(PRIVATE) <===default values; do not change
D2SYS1,0,0,3390 ,Y
GEORGE,0,0,3390 ,N <==we added this
WORK* ,0,0,3390 ,N <==we added this

The format is fixed and the spaces shown are important. Briefly, the parameters for volumes
are:

1. The volume serial number, in six columns. An asterisk matches any volser with the
specified characters.

2. The first ‘0’ is the mount attribute and is normally set to ‘0’ unless there are complex mount
circumstances.

3. The second ‘0’ is the use attribute. This is important. The value ‘0’ defines a STORAGE
volume. Value ‘1’ defines a PUBLIC volume and value ‘2’ defines a PRIVATE volume. The
VATDEF statement sets the default use attribute to PRIVATE.

4. The device type, in eight columns, left justified and padded with blanks.
5. An indicator whether z/OS should issue a MOUNT request for the volume. The value ‘Y’

indicates that z/OS will request this volume to be mounted at IPL time if it is not already
mounted. Generally, ‘N’ is appropriate for local STORAGE volumes.

The placement of SVC dump dataset can create a problem. By AD-CD default they are on the
xxSYS1 volume.8 An MVS command can be used to direct SVC dumps to new volume(s); the
command would be similar to DUMPDS ADD,VOL=(volser,volser,volser). Much more

7 Generally, a STORAGE volume is used when creating a permanent dataset and no volume is specified, although
the exact details involved can be a little more complex.

8 You can look for data sets with names such as SYS1.ADCD.DMPnnnnn and delete them (assuming you are not
working on a problem that involves these dumps). The exact data set name pattern for SVC dumps is set in the
appropriate COMMNDxx member in PARMLIB.
222 IBM zPDT Reference and Guide

sophisticated controls are available through SMS functions, but these require administrative
work to create the desired environment.

12.7 Stand-alone z/OS dump

The z/OS stand-alone dump (SAD) is a program that is started (IPLed) from tape or disk. It
does not run under z/OS. However, it assumes that z/OS is present in z System memory at
the time the stand-alone dump is started. The stand-alone dump program is sensitive to the
release of z/OS that is being used and must match the z/OS release. A new version of the
stand-alone dump program should be generated whenever a new release of z/OS is installed.

This section describes a simplified use of stand-alone dump based on the AD-CD z/OS
system release 2.2, but the comments should apply to any recent z/OS release. The dump
program is placed on an “IPLable” disk volume and the dump output must be directed to a
different disk volume. The stand-alone dump program (and dumped output) can be used with
tape volumes, but this is not further described here.

Disk volumes
Two disk volumes are referenced here. One is for the dump program itself, which is relatively
small (about 100 tracks). This volume also contains IPL text to start the stand-alone dump
program. This volume must be mounted as PRIVATE to run the dump generation job, but can
be in any mount status when IPLing the dump program. An additional rule is that the SAD IPL
volume cannot contain a paging dataset for the system being dumped.

The other volume is for the dump itself.9 A stand-alone dump can be large: hundreds of
cylinders up to many thousands of cylinders. In our example we assume a suitable volume is
mounted at address AC0. Before using the stand-alone dump program, you must create the
dump output data set on this volume using an IPCS or REXX utility function.

The dump program (that you IPL) cannot be on the same volume that is to receive the dump
data.

12.7.1 Generating a stand-alone dump program

The following job generates the stand-alone dump program and writes it on volume LOCAL1.
You later IPL it from this volume when you want to take a stand-alone dump.

//SADBILL JOB 1,OGDEN,MSGCLASS=X,REGION=40M
// EXEC PGM=AMDSAOSG
//SYSLIB DD SYS1.MACLIB,DISP=SHR
// DD SYS1.MODGEN,DISP=SHR
//DSFSYSIN DD DSN=&DSFSYSIN,DISP=(,PASS),
// SPACE=(80,(9,1)),UNIT=SYSDA
//TRK0TEXT DD DSN=&TRK0TEXT,DISP=(,PASS),
// SPACE=(4096,(4,1)),UNIT=SYSDA
//GENPRINT DD SYSOUT=*
//GENPARMS DD *
 AMDSADMP IPL=D3390,VOLSER=LOCAL1,CONSOLE=(700,3279),OUTPUT=DAC0
 END
/*
//PUTIPL EXEC PGM=ICKDSF

9 The dump output can be directed to tape instead of a disk volume. Our discussion here concentrates on disk
output.
Chapter 12. Minor z/OS notes 223

//IPLDEV DD DISP=OLD,UNIT=3390,
// VOL=(PRIVATE,RETAIN,SER=LOCAL1)
//TRK0TEXT DD DSN=&TRK0TEXT,DISP=(OLD,DELETE)
//SYSIN DD DSN=&DSFSYSIN,DISP=(OLD,DELETE)
//SYSPRINT DD SYSOUT=*

Check the JES2 output when the job ends to ensure that it completed correctly. This is a
somewhat unusual job. If there are error messages (perhaps about PUTIPL SYSIN problems
or a message from ICKDSF) you must delete the dump program data set (on volume LOCAL1
in this example) before trying the job again. It will have data set name
SYS1.PAGEDUMP.VLOCAL1. The format of the GENPARMS input conforms to basic
assembly language rules, with the continuation indicator in column 72 and the continued text
starting in column 16.

If you have already written IPL text on the dump program volume (LOCAL1 in this example),
there will be an operator message and reply needed before the IPL text is replaced.
Remember that this volume (LOCAL1 in the example) must be mounted PRIVATE when this
job is run.

The error messages (or non-zero return codes) seen when attempting to run this job are not
always helpful. There appears to be three common problems:

� The target volume for the dump program (the “IPL volume”) must be mounted PRIVATE
while installing the dump program.

� The dump program and the target for the dump output cannot go on the same volume.
You will always have at least two disk volumes involved. In the example job, the IPL text
and dump program are placed on volume LOCAL1. The dump output is placed on the
volume at address AC0. This volume must have preallocated space for the dump output.

� The dump program (on the IPL volume you designate) must be deleted before you can try
the job again.

12.7.2 Stand-alone dump output dataset

Output (“the dump”) from the Stand Alone Dump program requires a preallocated dataset.
This can be created with IPCS or with a REXX program named AMDSADDD. Briefly, the
REXX program can be used by going to ISPF option 6, entering “AMDSADDD” and replying
to the prompts as follows:

What function do you want
define
Please enter the volume serial
BIGVOL (assume BIGVOL is at address AC0 in our example)
Please enter device type
3390
Please number number of cylinders.....
3000 (this might be a reasonable size...)
Do you want the dataset cataloged...
n
Specify the DSNTYPE. Reply BASIC, or LARGE or EVTREQ...
large
Specify additional attributes
no

Data set SYS1.SADMP is allocated on volume BIGVOL
224 IBM zPDT Reference and Guide

As described here the dump dataset can be used for only one dump. To reuse it you must
reset or clear it. This is done with the same AMDSADDD program, selecting a different option
at the first prompt.

12.7.3 Operating a stand-alone z/OS dump

We assume you have been running z/OS and need to take a stand-alone dump for some
reason:

$ stop all (stop the CPs)
$ ipl AB3 (assume volume LOCAL1 is mounted at this address)

Wait about 10 seconds and press Enter on the 3270 console at address 700. This produces
console messages similar to these:

AMD083I AMDSADMP: STAND-ALONE DUMP INITIALIZED. IPLDEV: 0580 LOADP:
AMD001A SPECIFY OUTPUT DEVICE ADDRESS (1): (press Enter)
AMD101I OUTPUT DEVICE: 0AC0
 SENSE ID DATA: FF 3490 10 3490 40 BLOCKSIZE: 29,120
AMD011A TITLE=my dump stuff
AMD005I DUMPING OF READ STORAGE NOW IN PROGRESS
AMD005I DUMPING OF PAGE FRAME TABLE COMPLETED
 etc
AMD029D REPLY W TO WAIT AFTER NEXT FULL SCREEN, ELSE REPLY N; REPLY=n
 etc

12.8 Moving 3390 volumes

The following text describes a generic method of moving 3390 volumes between z/OS
systems (including z/OS on zPDT). Another method, using a client/server application
provided with zPDT, is described in Chapter 15, “DASD volume migration” on page 281.

zPDT-emulated DASD volumes can be transferred to other systems in several ways. Sending
a volume to another zPDT system is especially easy. The Linux file that holds the emulated
3390 volume can simply be copied.10 Optionally, the copy could be compressed (with gzip,
for example) for transmission. The transmission could be by FTP, by a USB thumb drive, by
burning a CD or DVD, or by various other means. The key concept is that a large Linux binary
file is being transferred.

Moving an emulated 3390 volume to (or from) a non-zPDT system is a little more complex,
because it must be handled in a z System format instead of a Linux format. The traditional
method is to dump the volume to tape (using the ADRDSSU program) and then restore the
tape on the target system. This method can also be used with emulated tapes (in awstape
format), provided that both the sending and receiving systems can use this format.

The following example assumes both systems cannot use awstape format (otherwise we
would use the easier method of creating a dump tape in awstape format). We assume there is
a network connection between the source z/OS and the target z/OS system. We also assume
that the target system is a zPDT system, although this is not a requirement for the technique
described. See Figure 12-1.

10 Do this when z/OS is not running, of course.
Chapter 12. Minor z/OS notes 225

Figure 12-1 Overview of our example

Preparation
We need z/OS disk space to hold a 3390 volume dump and to hold a reformatted volume
dump. These can be large data sets. You might have sufficient space on existing z/OS
volumes; we elected to create three new volumes for holding large temporary data sets. We
did this using normal zPDT techniques. First we created three new emulated 3390 volumes
using the alcckd command (done while zPDT is not operational). The placement (/z
directory), model (3390-3), and names of the files (TEMPnn) are all arbitrary.

$ alcckd /z/TEMP01 -d3390-3
$ alcckd /z/TEMP02 -d3390-3
$ alcckd /z/TEMP03 -d3390-3

We then added these volumes to our devmap. The addresses specified (AA0, AA1, and AA2)
are unused address that are known as 3390 devices for our z/OS. (That is, z/OS has these
addresses specified as 3390 devices in the IODF it uses during IPL. The AAx addresses are
suitable for the default IODF in the z/OS AD systems.)

[manager]
name awsckd 0001
....
....
device AA0 3390 3990 /z/TEMP01
device AA1 3390 3990 /z/TEMP02
device AA2 3390 3990 /z/TEMP03

We then started zPDT and IPLed z/OS. During z/OS startup the new devices are recognized
as uninitialized volumes and are varied offline. When z/OS was ready, we ran a job to
initialize the volumes:

//BILL123 JOB 1,OGDEN,MSGCLASS=X
// EXEC PGM=ICKDSF,REGION=40M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INIT UNIT(AA0) NOVALIDATE NVFY VOLID(TEMP01) PURGE -
 VTOC(0,1,05)

ADRDSSU
program
(DUMP)

Whole
volume

Data set
OGDEN.OUT.DUMP

Data set
OGDEN.XMIT.DUMP

/tmp/xmit/dump

Data set
OGDEN.UNXMIT.DUMP

Data set
OGDEN.XMITR.DUMP

XMIT
program

ftp

Intermediate ftp node
(optional)

Whole
volume

ftp

RECEIVE
program

ADRDSSU
program

(RESTORE)

Source z/OS system

Target z/OS system
226 IBM zPDT Reference and Guide

INIT UNIT(AA1) NOVALIDATE NVFY VOLID(TEMP02) PURGE -
 VTOC(0,1,05)
INIT UNIT(AA2) NOVALIDATE NVFY VOLID(TEMP03) PURGE -
 VTOC(0,1,05)
/*

The z/OS operator must reply U to a ICK003D message for each volume. The volsers
(TEMP01, and so forth) are the same as the Linux file names; this is not required but is a
good practice. After the volumes are initialized, they can be varied online to z/OS, using the
MVS console:

vary aa0-aa2,online

12.8.1 Create a source dump

A normal ADRDSSU job is used to dump the source volume. Our example uses WAS001 as
the volser of the source volume:

//BILL456 JOB 1,OGDEN,MSGCLASS=X
// PGM=ADRDSSU,REGION=40M
//SYSPRINT DD SYSOUT=*
//IN DD UNIT=3390,VOL=SER=WAS001,DISP=SHR
//OUT DD UNIT=3390,VOL=SER=TEMP01,DISP=(NEW,CATLG),
// DSN=OGDEN.OUT.DUMP,SPACE=(CYL,(200,200))
//SYSIN DD *
 DUMP INDD(IN) OUTDD(OUT) ADMINISTRATOR COMPRESS OPTIMIZE(4)
/*

The space specified in the output DD statement might need to be adjusted, depending on the
contents of the source volume. We next created another data set with specific DCB
attributes.11 (This step could be done using ISPF 3.2 functions, but we used a batch job to
provide better documentation.)

//BILL567 JOB 1,OGDEN,MSGCLASS=X
// PGM=IEFBR14
//MAKEIT DD UNIT=3390,VOL=SER=TEMP02,DISP=(NEW,CATLG),
// DSN=OGDEN.XMIT.DUMP,SPACE=(CYL,(200,200)),
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120)

We then used the TSO xmit command to reformat the dump:

xmit x.y ds('ogden.out.dump') outdsn('ogden.xmit.dump')

This command can take considerable time if a full volume is being processed. The result of
these steps is a volume dump in a format known to z/OS, but also in a format (fixed block)
that can be handled by FTP. The x.y positional operand is needed in xmit, but is
meaningless in this example. Note that the terse program could be used instead of xmit.

It is important to understand the reason for the xmit step. In the general case, FTP does not
understand the block and record structure of a z/OS file (such as the ADRDSSU output file).
This information is lost during FTP and the resulting file is not usable. The xmit program
changes the ADRDSSU dump file into a fixed block, fixed record format. The general FTP
process does not understand this either. However, if the transferred (with FTP) file is stored in
the receiving z/OS with the same fixed block and LRECL size, the file is usable.

11 These DCB attributes are used by XMIT.
Chapter 12. Minor z/OS notes 227

Some FTP situations allow additional parameters such that the original block and record
characteristics of a file are retained and the xmit step could be skipped. This can be done in a
z/OS to z/OS FTP transfer. The method presented in this section assumes the more general
case in which the FTP transfer does not retain the original block/record information.

12.8.2 Send dump to Linux

We then sent the xmit-formatted dump to Linux, using an FTP connection from Linux to z/OS.
We used the zPDT tunnel facility for the connection in our example, but any TCP/IP
connection to z/OS could be used. The IP address for z/OS is 10.1.1.2 in this example:

$ ftp 10.1.1.2
Name (10.1.1.2:ibmsys1): ibmuser
Password: xxxxxx
Remote system type is MVS
ftp> cd 'ogden'
ftp> lcd /tmp
ftp> bin
ftp> get 'xmit.dump'
ftp> bye

This example has the FTP connection initiated from the Linux side. It could be done from the
z/OS side, provided the Linux system has an FTP server running.

The dump is now in /tmp/xmit.dump as a normal (large) Linux file. It can be transmitted
elsewhere using any technique suitable for a large Linux file. It could be compressed (using
gzip, for example.) At this point the dump (OGDEN.OUT.DUMP) and the reformatted dump
(OGDEN.XMIT.DUMP) on the source z/OS system can be deleted if disk space is a concern.

You can skip this intermediate Linux step if there is a direct FTP connection between the
source z/OS system and the target z/OS system.

12.8.3 Receive dump

There are fewer complications if two data sets are preallocated on the receiving z/OS system.
One data set is the target of an FTP transfer from Linux (or some other source) and the other
is for the output of the TSO RECEIVE function. This last data set is then the input to a
RESTORE job.

//BILL678 JOB 1,OGDEN,MSGCLASS=X
// PGM=IEFBR14
//D1 DD UNIT=3390,VOL=SER=TEMP01,DISP=(NEW,CATLG),
// SPACE=(CYL,(200,200)),DSN=OGDEN.XMITR.DUMP,
// DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120)
//D2 DD UNIT=3390,VOL=SER=TEMP02,DISP=(NEW,CATLG),
// SPACE=(CYL,(200,200)),DSN=OGDEN.UNXMIT.DUMP

The dump file can be sent from Linux to z/OS using FTP. (If the file was compressed in Linux
it must be uncompressed before sending it to z/OS.) Our example uses IP address 10.1.1.2
for z/OS because, for demonstration purposes, we used the same zPDT z/OS system that we
used to create the dump volume. In practice, this is likely to be a different z/OS system that
might not be in a zPDT environment.

$ ftp 10.1.1.2
Name (10.1.1.2:ibmsys1): ibmuser
Password: xxxxxx
228 IBM zPDT Reference and Guide

Remote system type is MVS
ftp> cd 'ogden'
ftp> lcd /tmp
ftp> bin
ftp> put xmit.dump xmitr.dump
ftp> bye

We then used TSO to reformat the dump into the original format created by ADRDSSU:

receive indsn('ogden.xmitr.dump')
(reply to the prompt with) DSN('ogden.unxmit.dump')

Finally, the volume can be restored in z/OS:

//BILL890 JOB 1,OGDEN,MSGCLASS=X
// PGM=ADRDSSU,REGION=40M
//SYSPRINT DD SYSOUT=*
//IN DD UNIT=3390,DSN=OGDEN.UNXMIT.DUMP,DISP=SHR
//OUT DD UNIT=3390,VOL=SER=TEMP03,DISP=OLD
//SYSIN DD *
 RESTORE INDDNAME(IN) OUTDDNAME(OUT) PURGE ADMINISTRATOR COPYVOLID
/*

You might not want the COPYVOLID parameter in this job, depending on your
circumstances. You cannot have two disk volumes with the same volser online to z/OS at the
same time. If you do not specify COPYVOLID, the existing volser (TEMP03 in the example) is
retained. If you specify COPYVOLID and a volume with this volser is already online, the
restored volume is taken offline after the restore operation is complete. (In our example, the
restored volser would be WAS001.)

Comments
Many variations are possible in this general process. For example, some of the z/OS
preallocation of data sets can be skipped if your FTP supports site and locsite
subcommands. While perhaps a bit longer than absolutely necessary, we think the process
shown here should work in almost any situation.

12.9 IODF Changes with zPDT

When working with a larger z System, IODF and IOCDS creation are almost always done at
the same time, working with HCD. This typically starts as follows:

HCD (usually started from an ISPF panel)
1. Define, modify, or view configuration data

3. Processors
4. Control Units
5. I/O Devices

The HCD functions verify that an allowable configuration is specified. That is, the processor
(type and model), CHPIDs, and I/O devices must all be mutually allowable. This is a useful
check for a larger z System, but it creates problems with zPDT.

A zPDT system does not use an IOCDS and does not understand many hardware CHPID
details. Furthermore, typical zPDT configurations are not compatible with the normal HCD
verification and processing we would use with a larger z System. At the time of writing, I/O
device configuration for a z/OS system on zPDT consists of a software only IODF generation,
followed by the creation of a matching devmap. Many z/OS users are not immediately familiar
Chapter 12. Minor z/OS notes 229

with a software only IODF and we provide an overview of the topic here; it is considerably
simpler than a “normal” IODF.

Assume we want to add 15 OSA devices starting at address 410 and an OSAD device at
address 41F. Using the IODF99 that is provided with the current z/OS AD-CD system12, we
could proceed as follows:

HCD (started via ISPF menu item M.4)
 1. Define, modify, or view configuration data

I/O DEFINITION FILE 'SYS1.IODF99'
 1. Operating System Configuration
 / OS390 (select configuration named 'OS390')
 7. Work with attached devices

(This should produce a list of current devices)
 F11 - Add

At this point you should have a panel to enter a new work IODF name. We entered the name
SYS1.IODF77.WORK and volser C2SYS1 in this panel. The data set name should follow this
pattern (although the 77 portion of the name is arbitrary) and the volser should be the volume
that is specified in the IPL parameter (C2SYS1 in the z/OS 2.2 AD system).

This is followed by a panel to add devices to the new work IODF. We entered the following
information:

Specify or revise the following values.

Device number. 410 + (0000 - FFFF)
Number of devices 15
Device type. OSA +
Serial number.
Description.
Volume serial number . . . ______ (for DASD)
Connected to CUs . . ____ ____ ____ ____ ____ ____ ____ ____

Press Enter and again select (with a / character) the OS390 configuration. Select option 1 (to
connect or change the new I/O devices). This is followed by a panel allowing you to alter
default device parameters; you should take the default options unless you have a particular
reason for changing them. Press Enter. This is followed by a panel to associate esoteric
names with the new devices; you might use this for DASD or tape devices but probably not
for any other types of devices. Press Enter and then select (with a / character) the OS390
configuration again.

Press F3 to return to the device list, and you should now see 410,15 in the list. Again select
F11 (to add devices) and add a single OSAD device at address 41F, following the same steps
used for the 15 OSA devices.

When your new I/O devices have been added to the list, use F3 three times to return to the
initial HCD menu. You then need to process your new IODF file.

2. Activate or process configuration data
I/O DEFINITION FILE 'SYS1.IODF77.WORK'

 1. Build production I/O definition file
(This may produce some warning messages, usually about esoteric
tokens. Ignore these messages. F3 to exit the warning panel.)

Command ==>

12 This example is based on the z/OS 2.2 AD-CD system, but later releases should be similar.
230 IBM zPDT Reference and Guide

Date & Time : 2008-07-14 13:14:51
User: IBMUSER
I/O Definition file. . .: SYS1.IODF77.WORK
Change reference number.: 00018
****** ************************TOP OF DATA **************************
.......
****** ************************BOTTOM OF DATA ***********************

Press F3 to exit this panel. The next panel allows you to name the new production IODF file:

Specify the following values, and chose how to continue.
Work IODF name : 'SYS1.IODF77.WORK'
Production IODF name . .: 'SYS1.IODF77'
Continue using as current IODF:
1 1. The work IODF in use at present
 2. The new production IODF specified above (not valid for zPDT)

The next panel allows you to specify or revise these values; press Enter. This should produce
the message PRODUCTION IODF SYS1.IODF77 CREATED. Use F3 several times to exit from HCD.

To use the new IODF you must alter one or more of the LOADxx members in SYS1.IPLPARM to
refer to the new IODF. For example, edit member LOAD00 in SYS1.IPLPARM:13

IODF 99 SYS1 <--change this line
SYSCAT Z9SYS1113CCATALOG.Z19.MASTER
SYSPARM 00
IEASYM 00
NUCLST 00
PARMLIB USER.PARMLIB Z9SYS1
PARMLIB ADCD.Z112.PARMLIB Z9RES1
PARMLIB SYS1.PARMLIB Z9RES1
NUCLEUS 1
SYSPLEX ADCDPL

Change the 99 in the first line to 77 (or whatever number you used for your IODF). The format
of this statement is odd, but it results in the name SYS1.IODF77. Be certain to place your
changed characters in the same columns as the original characters. Do not change anything
else in the LOADxx member unless you are certain about your actions.

The new IODF is now ready to use the next time you IPL z/OS with the parameter:

$ ipl 0a80 0a8200 (The 00 corresponds to the LOAD00 member)

Assuming you are satisfied with the results, you will probably want to change all the LOADxx
members that you use. You must also change your devmap to use the new devices you
added to your z/OS system.

13 This example is from z/OS 1.9 and 1.12. Other details in your LOADxx member will differ from this example. The
key point here is in the first line of the member.

Note: At the time of writing, we have no information about the use of OSAD in the zPDT
environment.
Chapter 12. Minor z/OS notes 231

12.10 Local printing

There is often less need for hard copy printed output in today’s working environments, but it is
sometimes needed. There are a variety of ways to approach this. The following material
describes only one of these ways.

Background
Basic z/OS printing is closely related to the hardware available on the original S/360
machines. The most common printer at that time was the IBM 1403. It printed lines with 120
characters (or 132 characters, with an optional feature) and was normally set to print 6 lines
per inch on fan-fold paper that was 11 inches long. This meant a full page held 66 lines. In
practice, many programs counted output lines and skipped to a new page after 60 or 61 lines.

Much of the utility software with the system, such as JCL processors, assemblers, compilers,
system report programs, and so forth was designed to fit these pages. That is, they printed
lines of up to 120 characters (sometimes up to 132 characters) with about 60 lines per page.
This default convention is still with us today.

Later hardware replaced the line printers (such as the 1403) with laser printers. These were
devices such as the IBM 3800, 3820, 3825, 3900, and so forth. These could accept a variety
of paper sizes, but were most commonly used with “letter size” paper.14 With proper
programming, these printers can produce sophisticated output using many fonts and graphics
components. However, the system utilities (compilers, for example) continued to produce
listings in “1403 format.” Software for these laser printers can accept this 1403-format data
and list it. These listings typically are two-sided, landscape mode, and contain up to 66 lines
of 132 characters on each page.

Real 1403 printers are historical items, but there are many uses for pseudo-1403 devices.
z/OS and JES2 still support 1403 printers and zPDT can emulate 1403 printers. This is all
that is needed for printed output from utilities, compilers, and many existing applications.

Using a PC printer
Our goal was to use a common PC laser printer and have utility output produced in the format
just described: landscape mode, 66 lines per page, 132 characters per line. If the PC printer
provides duplex printing (printing on both sides of the paper), this would be used. The flow is
illustrated in Example 12-2.

Our tests used a Lexmark OptraS1250 and Optra L printers (both with duplex printing
features). We have not tried the techniques described here with other printers, but we expect
the same or similar techniques could be used. However, remember that z/OS printed output
typically contains separator pages, JCL listings and messages, and so forth; the smallest job
usually has multiple pages of printed output. This may not be suitable for use with a small
inkjet printer. We assume the use of a fairly heavy-duty laser printer for z/OS printing.

Figure 12-2 General flow for printing

14 The “letter size” (or A4 elsewhere) paper can be cut sheets or fanfold paper, depending on exactly which printer is
being used.

Application JES2 Spool 1403 emulator
132x66 sysout

Linux filelpr command prt00e shell scriptPrinter
232 IBM zPDT Reference and Guide

12.10.1 Setup

We need to provide the setup for Linux, the zPDT devmap, a shell script, and JES2.

Linux setup
We first configured our (very old) Lexmark Optra S1250 for Linux. This printer has a parallel
input; our computer had no parallel ports. We purchased a USB-to-parallel cable and this
provided the needed connectivity. We used YAST (running under openSUSE) to configure
the printer.15 A print queue named optras1250 was created automatically by YAST. We
verified that the printer worked by using commands such as:

$ lpr /home/ibmsys1/prof12 (to print one of our devmaps)

Devmap setup
We added the appropriate 1403 definition to the zPDT devmap:

[manager]
name awsprt 4321 --windows
device 00E 1403 2821 /tmp/1403a

The --windows option is needed to place CR/LF characters in the output; without this option,
NL characters are used and a PC printer may not be happy with NL characters. The output
file name (/tmp/1403a in the example) is arbitrary. In our case, we did not expect much
printed output and /tmp seemed a reasonable place to put it. The output file may also be
assigned or changed with the awsmount command.

Shell script
We created a Linux shell script named prt00E (the name is arbitrary) and placed it in our
home directory (/home/ibmsys1, in our case). The shell script contained the following lines:

CTL=”\033\105\033\050\163\060\160\061\066\056\066\067\150\070\056\166
 \060\163\060\142\124\033\046\154\061\157\061\163\065\056\064\143
 \055\061\060\060\060\132”
CTL2=”\014\033\105”
(/bin/echo -ne $CTL; cat /tmp/1403a; /bin/echo -ne $CTL2) | lpr -P optras1250

The CTL and CTL2 definition constants are printer control characters, written in octal.16 The
octal format was the most convenient for use in a shell script. If you have good script writing
skills you can do this several ways. The particular control characters shown here are for the
Lexmark printers we mentioned. Your printer may require different controls. If you are printing
to the default Linux printer you do not need the -P parameter (and queue name) of the lpr
command.

The logic in the shell script is simple. It sends data (via a pipe and lpr) to the queue we
defined earlier. It sends the CTL string (using echo), then sends the print data from the output
file we named in the devmap or awsmount command (using cat), and then sends the CTL2
string (using echo) to flush the printer buffer and reset the printer.

The CTL control string (for our Lexmark printers) resets the printer, switches to a fixed font,
sets a small type size pitch, changes to 8 lines/inch, uses a Courier font, uses landscape,
duplex printing, uses 5.4/48 line height, and a small line offset to better center the data. The
only unique requirement is that the format must use exactly 66 lines per page in order to
synchronize with the pages produced by the 1403 emulator.

15 Red Hat Linux has a different configuration process, but the end results are about the same.
16 CTL is shown as three lines here, but it is actually created as one long line containing 38 octal constants.
Chapter 12. Minor z/OS notes 233

In the following strings \033 is the ESC character that is used to begin printer command
strings, and this is shown as a bold-face E in the character equivalents of the string. The octal
constants are the equivalent of the characters shown and the CTL string could be written with
characters (except for the ESC byte).

The CTL commands are as follows:

OCTAL constant....... Characters Comment
\033\105 EE Reset printer
\033\050\163\060\160 E(s0p Use a fixed font,
\061\066\056\066\067\150 16.67h with 16.67 inch character pitch
\070\056\166 8.v with 8 lines/inch characteristics
\060\163\060\142\124 0s0bT using upright, medium Courier
\033\046\154\061\157 E&l1o Use landscape format
\061\163 ls with duplex printing, long edge
\065\056\064\143 5.4c 5.4/48 inch line height
\055\061\060\060\060\132 -1000Z line offset

The CTL2 commands are as follows:

\014\033\105 Force last page, reset printer

The CTL string was produced after some experimentation. It works for our printers, but it may
contain unnecessary elements. Notice that we hard-coded the file name (/tmp/1403a) in the
shell script; more skilled users may want to make this a command-line variable.

JES2 setup
Normal z/OS printing flows through JES2 and printers must be known to JES2. Recent
AD-CD systems do not have a printer defined for JES2. We need to define a 1403 at address
00E for JES2. (We use device number 00E because it is the traditional address for a 1403
printer and because it is already defined in the AD-CD IODF.) Edit the AD-CD PARMLIB
member JES2PARM to contain the following line:

PRT(1) WS=(W,R,Q,PMD,LIM/F,T,C,P),UNIT=00E,CLASS=C

If you scroll through the existing JES2PARM (in the AD-CD system) you will find commented
lines similar to this. You can insert a new line, as shown, or convert the commented lines into
active lines.17 The print class (CLASS=C) is arbitrary; we selected class C because nothing
defaults to this class.

We added the printer definition to JES2 and did another IPL of z/OS. (There are various ways
to do the same task without the re-IPL.) We verified that the printer was online (d u,,,00E,1)
and then issued a JES2 command to start it ($SPRT1). Use a $SPRT1 command as the
response to requests to mount forms and so forth.

12.10.2 Operational technique

We then ran jobs that sent output to SYSOUT=C. For example,

//OGDEN1 JOB 1,OGDEN,MSGCLASS=C
// EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT1 DD DSN=SYS1.PARMLIB(IEASYS00),DISP=SHR
//SYSUT2 DD SYSOUT=*

17 If you convert the commented lines into active lines, be especially careful with the /*....*/ comment indicators; be
certain you remove matching pairs.
234 IBM zPDT Reference and Guide

After submitting this job, you should see z/OS console messages about jobs sent to PRT1. If
JES2 requests a setup function for the printer, reply $SPRT1. If the emulated printer is started
(for JES2), the printed output is immediately sent to the “printer.” As described here, this is file
/tmp/1403a in Linux. Additional output (from multiple jobs) is simply added to the file. The
emulated printer cannot distinguish where one job ends and the next begins; the JES2
separator pages are needed for this.

At some point you can stop the JES2 printer ($PPRT1) and print the accumulated output under
Linux. (You do not need to stop the JES2 printer if you are certain no additional output will be
sent to it.)

Disconnect the output file (/tmp/1403a) from the emulated printer:

$ awsmount 00E -u

You then run the shell script:

$ cd /home/ibmsys1 (Directory containing the shell script)
$./prt00E (Execute the shell script)

The printer begins printing output. Notice that the output includes all the job separator pages
produced by JES2. When it finishes, you can use awsmount to provide an empty output file for
the emulated printer:

$ rm /tmp/1403a (Delete the old output file)
$ touch /tmp/1403a (Start a new output file; same name)
$ awsmount 00E -m /tmp/1403a (Connect new output file)

We deleted the output file (assuming we do not want to print the same jobs again). We then
re-created the same file (because the name is hard-coded in the shell script) and “mounted” it
on the emulated printer, ready for more output.

If you stopped the JES2 printer, you need to start it again ($SPRT1).

12.11 SYS1.LOGREC full

Maintaining SYS1.LOGREC is a normal z/OS system programmer’s task. There is nothing
unique to zPDT or the AD-CD distribution. Production installations, using larger z System
machines, often keep ordered histories of LOGREC data and study any new material in
LOGREC. It includes data about hardware and software failures, IPL statistics, volume use
statistics, and so forth.

Most zPDT users simply ignore SYS1.LOGREC until they receive messages that it is full.
These messages do no harm, but it is a good idea to clear LOGREC when such messages
are received. There is at least one job in the AD-CD libraries to do this, but the job name (and
library name) may change from time to time. The following is a job to clear SYS1.LOGREC.
The particular format shown here is quite old and should be used exactly as shown.

//BILLCL JOB 1,OGDEN,MSGCLASS=X
// EXEC PGM=IFCEREP1,PARM='CARD'
//SERLOG DD DISP=SHR,DSN=SYS1.LOGREC
//DIRECTWK DD UNIT=SYSDA,SPACE=(CYL,5,,CONTIG)
//EREPPT DD SYSOUT=*,DCB=BLKSIZE=133
//ACCDEV DD DUMMY
//TOURIST DD SYSOUT=*,DCB=BLKSIZE=133
//SYSIN DD *
 SYSUM
Chapter 12. Minor z/OS notes 235

 ACC=Y
 ZERO=Y
/*

You may find slightly different jobs that perform the same function and any of these should be
acceptable. Never attempt to “clear” SYS1.LOGREC by simply deleting and reallocating it, or
by removing records with a text editor.

You can edit IEASYSxx members (in PARMLIB) to say LOGREC=IGNORE to avoid the
LOGREC full problems.

12.12 Lost MVS console

MVS does not like to lose its operator console (and this is not unique to zPDT operation!) If
you accidently close the TN3270e session that contains the MVS operator console, you might
try the following recovery.

First, simply try to re-establish the session. This might be easier if the MVS console has an
LUname in the devmap, as in this example:

$ x3270 -port 3270 mstcon@localhost &

Depending on exactly what was happening when the console was lost, the TN3270e
connection to the aws3174 device manager may still be active and you cannot make a “new”
connection to it. You can force the console session to completely disconnect by this
command in a Linux window:

$ awsmount 700 -d (assuming your MVS console is address 700)

You might then be able to connect the TN3270e session to address 700. You need to have
the TN3270e session connected before proceeding with additional recovery.

When MVS lost the console it probably started issuing messages in the Linux window used to
start zPDT. These are “HMC hardware console” messages. You can attempt to reactivate the
MVS console on 700 (assuming you have a TN3270e connection to 700) as follows:

$ oprmsg v 'cn(*),activate' (activate the "hardware console" for commands)
$ oprmsg v 700,offline
$ oprmsg v 700,offline,force (if the simple vary offline fails)
$ oprmsg v 700,online
$ oprmsg v 700,console
$ oprmsg v 'cn(*),deactivate' (optional)

This might not always work. Also, it might produce a console in 3270-2 (24 lines) mode, but
this is better than no console. The single quotation marks in the commands are needed to
prevent the Linux shell from directly using the parenthesis characters in the commands.

12.13 Unable to start ISPF

When logging onto TSO, the following message is sometimes seen when attempting to start
ISPF:

%%% UNABLE TO ALLOCATE OR CREATE ISPF PROFILE DATASET
ISPF003 FOLLOWING FILE WAS NOT PREALLOCATED
ISPPROF
236 IBM zPDT Reference and Guide

The most common reason for this problem is that the required ISPF profile data set was
uncataloged for some reason. This can happen when attempting to use the same profile data
set from two different z/OS instances, such as in a Parallel Sysplex environment, that was not
configured for such use. Crashing z/OS at just the wrong moment might also do this.

You need to recatalog the profile data set. Assuming you are logging on as IBMUSER, the
data set you want (in all recent AD-CD releases) is IBMUSER.ISPF.ISPPROF. You can log
on with another userid (ADCDMST is convenient for this purpose) and recatalog the data set.
The easiest way to recatalog the data set is to list the volume (C2SYS1, for example) using
ISPF 3.4 and to use a C line command to catalog the data set. (The C is entered at the
beginning of the line for that data set in the ISPF 3.4 display.)

Another solution, after ISPF fails to start, is to preallocate the data set (using basic TSO
commands) and then start ISPF again. To do this, use the following TSO command:

READY alloc da('ibmuser.ispf.ispprof') f(ispprof) shr vol(zcsys1) unit(3390)
READY ispf (start ISPF again)

You need to use the volser that matches your current system, of course.

12.14 Customized Offering Driver (COD)

The Customized Offering Driver (COD) is a small preconfigured z/OS system that is delivered
on a set of DVDs. The COD is intended as a base for installing a z/OS ServerPac or CBPDO.
The COD, at the time of writing, included the following characteristics:

� Three 3390-9 volumes are used, each distributed as a set of files on its own DVD. A
separate DVD is included containing documentation.

� A very wide range of addresses (device numbers) for 3390s and local 3270 consoles are
included, with a smaller range of addresses for SNA 3270-X, 3590 (tape), OSA, CTC, and
SCTC devices.

� TCP/IP is usable with some configuration work.
� Instructions are included for working as a z/VM guest.

Why would a zPDT user want to use the COD? The reasons might include:

� A desire to work with a more “basic” z/OS system than the AD-CD z/OS system. The
AD-CD z/OS system contains a considerable amount of customization making it easier for
many people to use it. Systems programmer training might include starting with a much
more basic z/OS level and the COD could be a more appropriate starting point.

� A simple practice platform before using the COD on a large Z system.

The COD is not part of zPDT deliverables and cannot be obtained through zPDT or AD-CD
channels.

The following example is based on the SUSE Leap42.2 Linux system. Your Linux might have
slight differences; for example the DVD drive might be named something other than /dev/sr0.
The installation example here assumes you are working with Linux userid ibmsys1. This is
arbitrary, as is the directory name /mnt/ibmdvd; we use these to provide specific installation
examples. We use su to work as root; you could use sudo instead if your Linux system is
configured for it.

Before starting, create a Linux directory named /mnt/ibmdvd that can be accessed by user
ibmsys1.

su (switch to root)
Chapter 12. Minor z/OS notes 237

mkdir /mnt/ibmdvd (create a mount point for COD DVDs)
exit (leave root)

Create three 3390 volumes. At the time of writing the volsers were named D9ECAT,
D9ESY1, and D9ESY2, and these are used in our example. We created our emulated
volumes in directory /z, but this is arbitrary, as are the Linux names we used to contain the
volumes.

$ alcckd /z/D9ECAT -d3390-9
$ alcckd /z/D9ESY1 -d3390-9
$ alcckd /z/D9ESY2 -d3390-9

We created a zPDT devmap named devcod, as follows:

[system]
memory 8G
processors 1 #You can specify 3 processors if they are available
3270port 3270
command 2 x3270 localhost:3270

[manager]
name aws3274 0002
device 00A1 3270 3274 #MVS console
device 00C0 3270 3274 #TSO

[manager]
name awsckd 0004
device 0170 3390 3990 /z/D9ESYS1
device 0171 3390 3990 /z/D9ESY2
device 0172 3390 3990 /z/D9ECAT

Each of three 3390 volumes are installed in the same way; the following text illustrates
installing the D9ECAT volume.

(insert the D9ECAT DVD and assume Linux will automount it.)
su (switch to root)
umount /dev/sr0 (unmount the dvd; name may vary)
mount -t iso9660 -o ro,map=o /dev/sr0 /mnt/ibmdvd
exit (leave root)
$ ls /mnt/ibmdvd (should see CAT)
$ ls /mnt/ibmdvd/CAT (should see multiple files)
$ awsstart devcod (start zPDT)
$ ipl_dvd /mnt/ibmdvd/CAT/DFSMSDSS.INS (upper case is important)
$ Enter ‘y’ to continue.....
$ y (reply y. Wait a few seconds))
$ Memory loaded. 0x20A0 Bytes at address 0x0
$ Memory loaded. 0x3FFC0 Bytes at address 0x20000
 (After a few seconds press Enter on the 3270 screen.)
 (You should see a message to clear the screen. Use ONLY the 3270 clear
 operation at this point.)
$ ADRY005E DEFINE INPUT DEVICE, REPLY ‘DDDD,CCUU’ OR ‘CONSOLE’
$ ENTER INPUT/COMMAND:
$ CONSOLE (your response)
$ ADRY006E DEFINE OUTPUT DEVICE, REPLY ‘DDDD,CCUU’ or ‘CONSOLE’
$ ENTER INPUT/COMMAND:
$ CONSOLE (your response)
$ ENTER INPUT/COMMAND:
238 IBM zPDT Reference and Guide

$ RESTORE FROMDEV(DVD) TOADDR(0172) PATH(‘/CAT’) FULL NOVERIFY
$ ADRY003D 0172 REPLY Y TO ALTER VOLUME, ELSE N
$ ENTER INPUT/COMMAND:
$ y (your response)
 (After a pause a number of progress messages should appear.)
$ FILE CAT001 has been processed with 0125806839 Bytes
 etc
 (Clear the screen if requested.)
$ ADRY0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0
$ awsstop

We stopped zPDT between restoring volumes and unmounted the current dvd:

$ su
umount /dev/sr0
eject

We then processed the other DVDs with the only change being the ipl_dvd and RESTORE
commands:

ipl_dvd /mnt/ibmdvd/SY1/DFSMSDSS.INS
RESTORE FROMDEV(DVD) TOADDR(0170) PATH(‘/SY1’) FULL NOVERIFY
ipl_dvd /mnt/ibmdvd/SY2/DFSMSDSS.INS
RESTORE FROMDEV(DVD) TOADDR(0171) PATH(‘/SY2’) FULL NOVERIFY

The correct PATH operand is critical. The restore command can be entered in lower case if
you prefer. Upper or lower case is critical for Linux commands but is usually ignored for z/OS
commands, including the stand-alone utilities.

After restoring the COD, we added a second command statement to the devmap to
automatically start a second 3270 session:

command 2 x3270 -geometry +1100+10 -model 3279-2 localhost:3270

The VTAM modtabs provided with the COD support only 24x80 sessions for VTAM and TSO.
If we use default x3270 screens (43x80) it is easy to mistake a partly-filled screen (which can
be scrolled forward) for the end of a list. The MVS console automatically adapts to the 43x80
screen size.

After starting zPDT, we proceeded as follows:

$ ipl 0170

After a few seconds the MVS console interaction (with the 3270 at address 00A1) went as
follows:

IEA101A SPECIFY SYSTEM PARAMETERS FOR Z/OS 02.01.00 HBB7790
r 00,clpa,sysp=00
....messages...
01 ICH502A SPECIFY NAME FOR PRIMARY RACF DATASET SEQUENCE 001 OR ‘NONE’
r 01,SYS1.RACF
02 ICH502A SPECIFY NAME FOR BACKUP RACF DATA SET
r 02,NONE
....lots of messages....
03 $HASP426 SPECIFY OPTIONS - JES2 z/OS 2.1
r 03,COLD,NOREQ
 (you might have a message to allow bypassing the multi-member
 integrity lock. If so, reply Y.)
04 $HASP441 REPLY ‘Y’ TO CONTINUE INITIALIZATION
Chapter 12. Minor z/OS notes 239

r 04,Y
...lots of messages....
 (Wait until you see the OMVS INITIALIZATION COMPLETE message)
d u,,,0C0 (verify our TSO terminal is online)
s vtam (start vtam & wait a few seconds)
s tso (start TCAS)
v net,act,id=d0c00df (appropriate for address 0c0)
 The “d0C00df” in this command is the name of a VTAMLST member related to
local 3270 address 0C0; this information is provided in the COD documentation.
On your TSO terminal (address 0c0) you should see THIS TERMINAL IS LOGGED ON TO
UNFORMATTED SYSTEM SERVICES.

Move to the TSO terminal session and enter LOGON DRVUSER. The password is also
DRVUSER. This should produce a CustomPac Master Application Menu. The “P” option
should start a normal ISPF session.

To shut down z/OS cleanly, logoff from TSO and use the following commands at the MVS
console:

p tso (stop TSO)
z net,quick (stop VTAM)
p lla
p vlf
 (Wait a few seconds for messages)
$pjes2,term
 (Wait a few seconds for messages)
z eod

Subsequent IPLs do not need to CLPA or COLD start JES2.

12.14.1 TCP/IP connection

We wanted to establish a TCP/IP connection to the COD z/OS system. The COD contains
many OSA definitions and we arbitrarily decided to use OSA addresses 0300-0302. The
profile parameters for TCPIP are in TCPIP.SEZAINST, the VTAMLST parameters are in
SYS1.VTAMLST, and the TCPIP procedure is in SYS1.PROCLIB. We proceeded as follows
to create a TCP/IP tunnel link to our base Linux (which is 10.1.1.1 for the tunnel):

� Add OSA definitions to our devmap (and restart zPDT):

[manager]
name awsosa 0006 --path=A0 --pathtype=OSD --tunnel_intf=y
device 0300 osa osa
device 0301 osa osa
device 0302 osa osa

� IPL the COD and start TSO (in a local 3270 session), as described above. We examined
the default TCPIP profile in TCPIP.SEZAINST(PROFILE) and found it too complex. We
created member PROFILE2 as follows:

ARPAGE 20
AUTOLOG 5
 FTPD JOBNAME FTBD1
ENDAUTOLOG
PORT
 7 UDP MISCSERV
 (copy all the PORT statements from PROFILE)
 3389 TCP MSYSLDAP
240 IBM zPDT Reference and Guide

SACONFIG
;
DEVICE PORTA MPCIPA
LINK ETH1 IPAQENET PORTA
HOME 10.1.1.2 ETH1
BEGINRoutes
ROUTE 10.1.1.0 255.255.255.0 = ETH1 MTU 1500
ROUTE DEFUALT 10.1.1.1 ETH1 MTU DEFAULTSIZE
ENDRoutes
TCPCONFIG RESTRICTLOWPORTS
UDPCONFIG RESTRICTLOWPORTS
IPCONFIG NODATAGRAMFWD
START PORTA

� We altered SYS1.PROCLIB(TCPIP) so that the PROFILE DD statement points to member
PROFILE2 instead of member PROFILE.

� We added member SYS1.VTAMLST(OSATRL1) as follows:

OSATRL1 VBUILD TYPE=TRL
OSATRLE1 TRLE LNCTL=MPC,READ=(0300),WRITE=(0301), X
 DATAPATH=(0302),PORTNAME=(PORTA), X
 MPCLEVEL=QDIO
(Be certain the continuation marks are in column 72)

� We edited member SYS1.VTAMLST(ATCCON00) member as follows:

TSOAPPL,TCPAPPL,OSATRL1

� We then reIPLed z/OS. After the startup process described above we entered z/OS
commands as follows”

v 300-302,online (Bring the OSA ports online)
s tcpip
s tn3270

At this point we could ping 10.1.1.2 from Linux. Starting a new x3270 session connected to
10.1.1.2 we received an UNFORMATTED SYSTEMS SERVICES prompt and could logon to
TSO. (We needed to first logoff from the local 3270 session because we had only a single
TSO userid.) When shutting down z/OS you should also stop TN3270 and TCPIP.

LAN configuration can be frustrating because there are so many details that must be exactly
correct. The steps described here create a link to the base Linux TCP/IP; this is probably the
most basic TCP/IP configuration possible with the COD and zPDT. It is a good starting point
before attempting to configure an external TCP/IP link.

12.15 WLM and AD-CD

The recent z/OS AD-CD systems are provided with a WLM service definition already
installed. While there is nothing wrong with the supplied WLM definition, it might not be overly
useful with typical zPDT usage. As a practice exercise we created another WLM service
definition. The following brief description of the process might be useful to a new zPDT owner
who has not previously worked with WLM.

WLM service definitions are created and used in the WLM coupling dataset(s). It is possible,
although not required, to then extract and write the WLM service definition to a PDS. A
number of PDS members are created when doing this, and the data is not in a “human”
format. The same PDS can later be installed in the coupling dataset (overwriting what is
Chapter 12. Minor z/OS notes 241

there) and then activated. At the time of writing the WLM coupling dataset is
SYS1.ADCDPL.WLM.CDS01 (and CDS02); the PDS copy is ADCD.Z22C.WLM.

WLM definitions can be quite complex, but can also be fairly simple if only simple controls are
needed and this is likely to be the case for a zPDT system. A complete WLM definition is a
service definition. A service definition contains one or more service policies. A service policy
involves workloads, service classes, and classification rules. A simple WLM definition might
contain only these elements. Only one service definition can be installed for WLM at any one
time18 and only one policy within that service definition can be active at any one time.
However, you can work on an additional service definition (using ISPF) in the coupling
dataset while a different service definition is being used.

We designed a service definition named BASEAD, having a single policy named BASEAD1,
with the characteristics shown in the table.

The workload names and service class names are arbitrary. With a more complex definition
there are common naming conventions, but we used our own names for this trivial example.
The “Imp” column is the “importance” specification for the service class. If multiple service
classes are not meeting their goals, then WLM adjustments are made in the order of
importance (with 1 being the most important). The “90% velocity” indicates work in this
service class is expected to run at 90% of the processor speed. The “90% in .25 seconds”
indicates that 90% of the transactions in this class should complete in .25 seconds or less.
Discretionary means there is no specific goal and usually indicates the lowest performance
class.

Our service definition is a little odd in that it places TSO importance above that of servers
such as DB2, CICS, IMS, MQ, and so forth. This unusual definition suited us because we
were using TSO to monitor other work and wanted our monitoring activity to have priority over
most other work. The CICS and SERVERS definitions are separate only because WLM rules
prevent assigning a velocity goal to CICS, IMS, and EWLM; if this were not the case we
would have placed all these in the SERVERS workload.

There are many IBM manuals, IBM Redbooks publications, and third-party documents
discussing WLM parameters in great detail; we do not attempt to repeat any of this material.
The purpose of the discussion here is to describe the mechanics of creating and using your
own WLM service definition, using our trivial example. As with most z/OS administrative
activities, there are many ways to go about it and we describe a very basic approach that can
be used as a starting point for more complex work.

We proceeded as follows (using a recent z/OS AD-CD system):

18 Only one service definition can be installed in the WLM coupling dataset at any one time. The keyword is
“installed;” this means a policy within it can be activated. A completely different service definition can be
concurrently built (using ISPF) in the same coupling dataset, but it is not “installed” at this point.

Workload
Name

Service Class
Name

Imp Service class goal Classification

HIGH FAST 1 90% velocity LDAP LSFM STC TCP

TSO TSO 2 90% in .25 seconds TSO

CICS CICS 3 80% in 1 second EWLM CICS IMS

SERVERS MEDIUM 3 50% velocity CB ASCH DB2 DDF IWEB MQ
SOM

BATCH SLOW Discretionary JES

Table 12-1 Trivial WLM definition
242 IBM zPDT Reference and Guide

� Decide on the basic design of your service definition, including initial workload names and
service class names. You can expand these later.

� Create a small PDS to save your workload once you have defined it. Each service
definition requires a separate PDS for saving it. We suggest 5 tracks, 5 directory blocks,
LRECL 80, RECFM FB.

� Go to ISPF option M.14 to start a WLM interactive dialog. Select option 3 to create a new
definition.

� On the next panel enter a service definition name of your choice and a brief description.
Then select option 1 to specify a policy name of your choice. (PF3 twice to return to the
main WLM menu.)

� Select option 2 to create a workload name. (PF3 twice to return to the main menu.) Select
option 2 again to create additional workload names. (Within the workload panel, use
option 1 to create a new name.)

� After defining your initial workload names, use option 4 to define service classes. For each
assign a service class name and the name of the corresponding workload that you
previously created. Then position the cursor to the Action field and enter I (for Insert new
period). This opens a small panel where you can select the a goal for this service class,
such as a velocity percentage, an importance parameter, and a duration (to be used if
there are multiple periods for this service class).19 If you entered a duration parameter,
then you should Insert another period specification. The last (or only) period for a service
class does not have a duration. You should assign a service class for each of your
workload names.

� After defining your workloads and service classes, use option 6 for Classification Rules.
This displays a panel with about 17 predefined classifications. Do not attempt to create
new classifications unless you understand how the whole z/OS system relates to WLM.
For each line in the panel, select option 3 (Modify). In the following panel tab to the
Service DEFAULTS field and enter the name of one of your service classes, followed by
PF3. If you do not associate one of your service classes with each of the classifications, it
will default to a SYSTEM level service class, which is an automatically provided high-level
service class.

� When you have assigned all the classifications, PF3 to the main menu and select the
Utility option at the top of the screen. You can validate your new definitions using one of
the options. (The validate function appears to check syntax, but makes no attempt to do
more than that.)

� Use PF3 to leave the WLM dialog. You should receive a panel offering to save your
definition to a dataset. Use this option to save to the PDS you defined for it. At this point
you could also use option 3 to discard all your work! This can be useful if you are
experimenting with the WLM dialog panels.

� There are many other choices in the WLM dialog panels, but the options we described are
sufficient to create a basic WLM service definition.

If you followed these steps you now have your service definition saved in a PDS. To use it,
start the WLM dialog again (M.14) and select option 1 to read a saved definition. The
resulting panel might already have the name you used to save your definition. If you enter a
question mark in this field, you should see the names of other saved WLM service definitions;
this is likely to include ADCD.Z22C.WLM or a similar name.

� Select one of the saved names; you will probably select your own dataset or the ADCD
dataset if you want to revert to the default AD-CD WLM service definition.

� You should then see the main WLM dialog panel. Select the Utilities option in the top line
of the screen, and select option 1 to Install the service definition. You will then see a
subpanel asking permission to overwrite whatever service definition is currently installed.
Reply YES to this question.

19 As already noted, there is a huge body of documentation about detailed WLM definitions. You can search this
material for information about goals, durations, and other groupings.
Chapter 12. Minor z/OS notes 243

� If you use the D WLM operator command you will see that the previous service policy is still
being used. In the WLM dialog select Utilities again, and select option 3 (Activate Service
Policy). Select a service policy from the list presented. This will activate the service policy
and a D WLM command should confirm this.

Is there any point to building your own WLM service definition when working with an AD-CD
system on zPDT? There is no simple answer. WLM is most effective in a system running
sustained mixed workloads. For practical purposes, most WLM actions result in changing
z/OS dispatching priorities and this is most meaningful if the system has a sustained
workload approaching 100% CPU utilization. Adjustments are made at something like 10
second intervals. A zPDT system with a few TSO users editing, compiling, and unit testing
modules presents an erratic workload that does not respond to WLM very well. However, a
heavy test workload that involves batch, DB2, and perhaps extensive (simulated) terminal
interaction might respond to WLM very well.

12.16 RMF Monitor III

Recent releases of the AD-CD system might not start IBM RMF™ Monitor III correctly, with a
failure finding a module. This can be corrected by adding GDDM.SADMMOD to the link list.
(Consider adding it to all the PRODxx members in PARMLIB.)

12.17 OTELNET

z/OS AD-CD releases typically allow you to connect to TCP/IP port 1023 with a simple telnet
command connection. From a Linux command prompt this might be as follows, if you have a
tunnel connection to your z/OS system using the address 10.1.1.2 for the z/OS system as
described in this book.:

$ telnet 10.1.1.2 1023

The 1023 port may not be configured for some releases. If your connection fails, edit
TCPIP.ETC.SERVICES and insert the following information in the appropriate place:

telnet 23/tcp
otelnet 1023/tcp

12.18 Compressing PARMLIB

We typically make many PARMLIB changes (usually to the current AD-CD PARMLIB) while
adjusting the AD-CD system to our individual needs.20 We then need to compress PARMLIB
to recover space and prevent unexpected expansion into multiple extents. With some AD-CD
releases, a simple compress (using the Z option in the ISPF 3.4 panel) fails because the
PARMLIB is being used by another job. Pressing PF1 twice (when this error message is
received) displays the name of the conflicting job (or jobs). The conflict may be from zFS. The
following MVS console command stops zFS and permits compression of the PARMLIB:

f omvs,stoppfs=zfs

This should be done when there are no UNIX System Services users, of course.

20 This is not a good practice, but it is very common. A better method is to first copy the target PARMLIB member to
USER.PARMLIB, and then make the changes there. USER.PARMLIB is concatenated before the normal ADCD
PARMLIB.
244 IBM zPDT Reference and Guide

12.19 Burning 3390 volumes on CD

If we wanted to preserve a 3390 volume on CD (or DVD), we could use the following
command to make a compressed copy:

$ gzip -c /z/C2RES1 > /z/C2RES1.gz

We could then burn the compressed file on CD or DVD by using a normal Linux CD/DVD
burning application.

12.20 Delete logstreams

The default location for log streams (for the AD-CD system) is the xxSYS1 volume (or the
equivalent, for other releases). These streams can sometimes grow to fill the volume. A
typical job for deleting a log stream is as follows:

//BILL1 JOB 1,OGDEN,MSGCLASS=X
// EXEC PGM=IXCMIAPU
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DATA TYPE(LOGR) REPORT(YES)
 DELETE LOGSTREAM NAME(WAS.ERROR.LOG)
/*

This should be done only if the log stream file is not being managed; that is, it is not
represented in current couple data sets.

12.21 SMF

Some of the recent AD-CD z/OS releases produce excessive SMF output. This is mostly due
to the type 99 records that are included. In these cases the default parameters were as
follows:

SYS(NOTYPE(14:19,62:69),EXITS(IEFU83,IEFU84,IEFACTRT,IEFUSI,IEFUJI,
 IEFU29),NOINTERVAL,NODETAIL)

If you have absolutely no interest in SMF data, we suggest you alter the SMFPRMxx
members in PARMLIB and change the first line from ACTIVE to NOACTIVE. If you might
have some interest in SMF job data (type 30) and perhaps RMF data (types 70 - 79) we
suggest the following line to produce minimal recording:

SYS(TYPE(30,70:79),EXITS(IEFU83,IEFU84,IEFACTRT,IEFUSI,IEFUJI,
 IEFU29),NOINTERVAL,NODETAIL)

Recent AD-CD system process full SMF datasets automatically, discarding the output. If you
want to process SMF data yourself, remove the IEFU29 exit that appears twice in the default
SMFPRMxx parameters. (We suggest that you eliminate recording of SMF record types that
you do not want before doing this.)

The uses of the various exits specified in the SMF parameters, if present, is beyond the
scope of this book. If you have access to Cheryl Watson’s Tuning Letters, the 2009 letters
contain a useful and practical introduction to SMF usage.21

21 For more information, see http://www.watsonwalker.com.
Chapter 12. Minor z/OS notes 245

http://www.watsonwalker.com

If you use logstreams for SMF and want to determine the quantity of each SMF type being
collected, you might use the following job:

//OGDEN101 JOB 1,OGDEN,MSGCLASS=X
// EXEC PGM=IFASMFDL,REGION=0M
//OUT DD DUMMY
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 LSNAME(IFASMF.GENERAL,OPTIONS(DUMP))
 OUTDD(OUT,TYPE(0:255))
/*

This job assumes your LOGSTREAM for SMF is named IFASMF.GENERAL, which is the name
used in the parallel sysplex system for zPDT described in other documents. Your name might
differ.

If you want to list a few details about the status of the LOGSTREAM, you might use the
following job:

//OGDEN102 JOB 1,OGDEN,MSGCLASS=X
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 DATA TYPE(LOGR) REPORT(NO)
 LIST LOGSTREAM NAME(IFASMF.GENERAL) DETAIL(YES)
/*

12.22 Disabled waits

You might sometimes see a message in your zPDT Linux window such as this example:

Warning! Disabled Wait CPU 0
$ d psw <--you can issue this command
PSW for CPU 0 000A0000 00000xxx (24/32 bit mode)
PSW FOR cpu 0 00020000 00000000 00000000 00000XXX (64-bit mode)

When you receive such a message, you can issue a command to display the PSW. The last
three characters of the PSW should contain a wait state code; an extended code may be also
present in other characters of the PSW. The following list provides abbreviated information
about standard wait state codes. See the System Codes manual for more complete
information about each code. Note that some wait states are restartable; again, see the
System Codes manual for more information.

Partial list (see the notes at the end of the list)
002 - During IPL, an I/O operation was not initiated (1)
003 - IPL cannot continue; subchannel is not operational for IPL or IODF device (1)
004 - During initialization, I/O not initiated (1)
005 - I/O interruption during IPL and unit check (2)
006 - I/O error during IPL processing; SYSRES or IODF volume (2)
007 - During initialization console not available (3)
009 - System build error. (z/OS problem; should be rare)
00A - Cannot find SYS1.LINKLIB or SYS1.CSSLIB in catalog (4)
00B - Master scheduler abended (4)
00D - Master scheduler abended (4)
00E - Problem on SYSRES volume (SYS1.NUCLEUS) (2)
00F - IPL volume does not contain IPL text (5)
013 - Error during NIP (6)
014 - Recursive program checks (6)
246 IBM zPDT Reference and Guide

017 - Unit check during IPL (2,5)
019 - IPL program in error (6). Also seen if IPLing an older operating system (that does
not support CZAM) on a z14 operating in the normal CZAM mode.
01B - SLIP requests wait (7)
01C - Recursive abend in FRR (8)
020 - Reconfiguration initialization failed (9)
022 - Page fault - devices quiesced or not ready (10)
023 - Trace initialization failed (11)
025 - Duplicate entry point in nucleus (6)
02E - ASM detected too many I/O errors (10)
030 - ABEND during NIP (6)
031 - No UCB for SYSRES (1, 2)
032 - NIP module missing (6)
033 - I/O error in BLDL during NIP (6)
035 - Could not find entry point in nucleus (6)
037 - DSCB for SVCLIB, PARMLIB, LINKLIB could not be read (12)
038 - Not enough main storage (11)
039 - DASD mount conflict (1,13)
03A - Error building LPA (6)
03B - Required module is not in LPA (6, 14)
03C - ASM found not enough paging storage (15)
03D - Error building page tables (11)
03E - Not enough page slots to back master scheduler initialization (15)
03F - NIP function invoked incorrectly (6)
040 - ABEND during NIP (6)
044 - Machine check during NIP (6) (Try IPLing again, at least once!)
045 - NIP could not initialize RTM (6)
046 - Program check during NIP (6)
04A - TOD clock in error (16)
050 - Alternate CPU recovery (ACR) entered recursively (16, 6)
051 - ACR had error (software) (6)
052 - ACR error (hardware) (16)
053 - PC or PC/AUTH failed (17)
054 - Error in member loaded into nucleus (6,14)
055 - IPL cannot find necessary member in SYS1.NUCLEUS (14)
056 - NIP error (6)
059 - Unidentified return code for BLDL during NIP (6)
05A - ACR tried to remove last CP (16)
05C - NIP cannot find catalog pointer in nucleus (18,12)
05D - During NIP, could not find DSCB for catalog (12)
05E - Error reading master catalog (2)
060 - ASM detected errors in page tables (6)
061 - TOD clock errors during STCK instruction (16)
062 - Channel path error (16)
063 - NIP storage problem. SQA too small? (4)
064 - NIP error and RTM not initialized (6)
065 - NIP issued type 3 or 4 SVC before they were available (6)
06F - I/O problem - unusual (1,2,10,13)
070 - NIP: insufficient contiguous main storage (6,11)
071 - System or operator initialized a restart
072 - No more workspace for IPL (6,11)
073 - IPL program waiting for I/O or external interrupt (16)
074 - IPL program contains a logic error (6)
075 - IPL program could not load a module (4,14,6)
076 - IPL found non-fullword relocatable address constant (6)
077 - SVC entry point cannot be resolved (6)
078 - Master catalog could not be opened (2,4,6)
07B - Required processor facility not available (19)
07C - Initialization error, configuration problem. (18,1,see Codes manual)
07D - IEASYSxx PARMLIB member is bad; in error (4)
Chapter 12. Minor z/OS notes 247

07E - Unable to obtain LSQA storage for SVC (11,6)
081 - SYS1.NUCLEUS occupies more than one extent
082 - System joining sysplex needs maintenance
083 - Incorrect address in PSA (16)
084 - RTM error (17,6)
085 - ASM warm start problem (1,10,20)
087 - System removed from sysplex (normal situation)
088 - IPL: error in LOADxx or NUCLSTxx (18,4,6)
089 - NIP found an error in a UCB (6)
08A - WTO error going to wait state
08C - WLM has recurring error (6)
08E - SYSEVENT error (6)
08F - Failure rebuilding work queues (6)
09x - SPINLOOP problem (See Codes manual for more information)
0A1 - Excessive SPINLOOP unresolved (21)
0A2 - XCF encountered cross system problem
0A3 - Unable to join global GRS
0A4 - ETR problem
0A5 - HCD problem (remember: zPDT does not support dynamic reconfiguration)
0A7 - Insufficient ESQA or ECSA storage (11)
0B0 - Could not recognize IODF specified in LOADxx (18,1)
0B1 - LOADxx member problem (18,1)
0B2 - No devices in IODF (18, or you created a bad IODF)
0B3 - Incorrect information in IPL parameter
0B4 - UIM specified unidentified device number (22)
0E0 - SIGNAL failed during NIP (16)
0E1 - SIGP STOP failed because processor was not operational (16)
0E3 - Insufficient virtual storage to initialize CSA (4)
0E8 - During NIP, the machine check handler failed (6)
101 - Program in supervisor state requested too much SQA (6)
102 - Program in supervisor state requested more pages of SQA than available (6)
104 - While provessing ABEND SVC, program check occurred recursively (6)
110 - System detected hot I/O from device other than DASD (16; note MVS console
messages)
111 - System detected hot I/O on DASD device (16, note MVS console messages)
112 - System detected hot I/O on reserved DASD (16, note MVS console messages)
113 - Failure during channel path recovery (16)
114 - Previous error affected SMP operation. See manual.
115 - DASD containing paging dataset is unavailable. (10)
116 - During restart, detected missing interrupt for paging device (16)
11A - Error during SVC 26 (6)
201 - Failure while creating COMMTASK (6)
202 - During system initialization, creation of console communications failed (6)
204 - Error during allocation (6)
205 - Attempted to load a module that was not in LINKST (6)
206 - Sysplex initialization operator message prompt
5C7 - Error during processor or system termination (6)
A00 - DAT error for system address space (16,6)
A01 - Error on only online processor (16)
A18 - Unsolicited Device end on paging volume; AVR failed. (complex)
A19 - Can no longer perform I/O (16)
A1E - Time-of-day clock failed (16)
A1F - Processor controller not available; TOD sync cannot occur (16)
A20 - System found page in FLPA that is not fixed (6)
A21 - Segment table entry for MLPA, PLPA, FLPA, or xFLPA is incorrect (6)
A22 - Error (probably hot I/O) invoked disabled console communication facility (see
manual)
A23 - Program check during machine check handling on only online processor (16)
A24 - Loop while running machine check handler on only online processor (6,16)
A26 - Machine check on only online processor; interruption code incorrect (16)
248 IBM zPDT Reference and Guide

A27 - Problems during machine check interruption handling
A28 - DAT-off machine check handler cannot start DAT-on machine check handler (6,16)
A29 - Problems stopping processor after program or machine check (6)
A2A - System detected LPA page that is not on paging data set (6)
A2B - Error in extended storage (16)
A70 - Console unavailable during NIP (3)
A71 - Reconfiguration problem (9; see codes manual)
A7A - Service processor interface failed (16,9)
B01-B1D Wait states used by the 3203/3211 utility
B20-B24 Wait states used by the stand-alone IOCP program
CCC - Wait state generated by QUISECE command
D0D - SMF had resource shortage (too much SMF output requested? Memory too small?)
E02 - Should never happen (16)
EC7 - Severe error in Unix System Services (6)
FFx - Non-IBM program created a wait state

The suggested actions provided by the following notes assume you are using z/OS (probably
the AD-CD system) in a normal manner. That is, we have these assumptions:

� You have not modified the system.
� You are not working with authorized programs or code.
� You have not installed middleware that operates as authorized code.
� You are not actively disrupting the hosting Linux environment for zPDT.

Review these notes:

1. Check that your devmap contains the necessary volumes and that they are at addresses
supported by the IODF of your z/OS system. For example, with an AD-CD z/OS system
have your 3390 volumes addresses in the range A80 -AEF. Restart zPDT and try again. If
necessary, verify your emulated 3390 volumes (using an alcckd xxxx -rs command.)

2. Verify that your IPL parameters point to the correct volumes for SYSRES and the IODF
volume. With the typical AD system these are addresses A80 and A82. Possibly these
volumes are corrupted. Verify your emulated 3390 volumes (using an alcckd xxxx -rs
command), restart zPDT and try to IPL again.

3. z/OS wants a NIP console. This is address 700 in existing AD-CD z/OS systems. Be
certain a 3270 session is connected to this address (or whatever NIP console address is
specified for your z/OS system). Also be certain the Linux window you used to start zPDT
is open, as this could provide an alternative, limited NIP console function in some cases. If
a 3270 session at address 700 is available, try to IPL again.

4. Have you altered a working system? Changed key PROCLIB members? Changed the
catalog line in the LOADxx member in SYS1IPLPARM? This is not recoverable. You must
IPL another z/OS system (or restore volumes for this z/OS.)

5. Ensure you IPL the correct volume. Verify your devmap and try again.

6. Internal z/OS problem. Probably not your fault unless the volume is corrupted. Try doing
an IPL of z/OS again. You might need to IPL another z/OS system or restore volumes for
this z/OS system.

7. Someone set a SLIP trap. This is probably a user-caused wait and whoever set the SLIP
trap should know how to proceed. System can be restarted.

8. Typically a system error, but might be an error in a software product. Try doing an IPL of
z/OS again, possibly without starting recently installed middleware.

9. You attempted a reconfiguration option that is not available for zPDT.

10.Possible devmap or PC disk error or emulated 3390 corruption error. Stop zPDT and
verify 3390 emulated volume formats with alcckd xxxx -rs commands.
Chapter 12. Minor z/OS notes 249

11.Be sure you defined enough memory for your z System. Try increasing the memory size in
your devmap and restart zPDT. (Consult zPDT documentation to understand the
maximum z System memory definition recommended for your configuration.) Most zPDT
users run z/OS with at least 4000 MB z System memory defined.

12.Did you IPL the correct volume? Has someone deleted data sets on this volume? Has
someone deleted system data sets?

13.Check your devmap carefully. Are two 3390 definitions pointing to the same file? Verify
that the 3390 devmap entries point to the correct Linux files. Fix your devmap and restart
zPDT.

14.Be sure no one deleted members in any system libraries. This is probably not recoverable.
You need to IPL another z/OS system and possibly repair this z/OS system.

15.You may have started a large program (such as WAS) and you do not have enough space
in your paging data sets. You might add paging data sets.

16.Restart zPDT. If the error persists, contact your zPDT provider.

17.Probably due to bugs in a software product. Were you starting a new product when this
happened? This is not recoverable. Re-IPL and try again.

18.Verify whether anyone modified SYS1.IPLPARM and whether you are using a new LOADxx
member in this library. If so, the new member has an incorrect catalog line. IPL with a
“standard” load parameter (to use a “standard” LOADxx member).

19.See the zPDT documentation for information about what facilities and functions are
available through zPDT. If you are unable to resolve the problem, contact your zPDT
provider.

20.Try a cold start (CLPA).

21.Try restarting zPDT with fewer processors defined in your devmap. Contact your zPDT
provider if the problem persists with fewer devmap processors defined than you have real
processors in your PC.

22.Check your devmap. Devmap and IODF must have compatible device addresses. Are you
attempting to use an unsupported device?
250 IBM zPDT Reference and Guide

Chapter 13. Additional zPDT notes

This chapter contains various topics, in no particular order. This information is not required for
basic zPDT operation but it is helpful for better understanding of zPDT and for more
advanced uses.

13.1 “Free zIIPs”

Starting with zPDT GA8, a token license is not needed for emulated zIIP processors.
However, the “free zIIPs” count toward the maximum of eight emulated processors per zPDT
instance and toward the requirement for at least one more PC core than the total number of
emulated processors. Also, there may not be more zIIPs than CPs.

For example, a user with a 1090-L02 token (two licenses), using a PC with four cores, could
configure two CPs and one zIIP.

A user with a 1090-L03 token (three licenses), using a PC with four cores, and with three
CPs, has no spare cores for a zIIP. This leads to discussion about PC Hyper-Threading.

13.2 PC Hyper-Threading

zPDT recommends that PC Hyper-Threading be disabled in the BIOS of any PC running
zPDT. We sometimes encounter z/OS “excessive spinloop” messages when running with
Hyper-Threading enabled, and disabling Hyper-Threading usually eliminates these
messages. While we can not verify our assumption, we assume that z/OS is spinning on one
“half” of a core and the z/OS process that would resolve the spin is waiting for cycles on the
other “half” of a core.

With limited Hyper-Threading experimentation we have not seen such spinloop messages
recently while running fairly simple batch and TSO sessions. However, this does not mean
that the spinloop situation does not exist; it only means that any spinloop conflict does not last
long enough to trigger a z/OS message.

13
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 251

Why is this topic more relevant now? Consider a user with a 1090-L03 token (three licenses)
and a PC with four processors. If this user wants to verify that his applications use zIIP
processing he cannot simply create a zIIP because he does not have enough PC cores.
Instead he must reduce his configuration to two general CPs and one zIIP in order to meet
the requirement of having at least one more core than the total number of processors. In this
case he is “wasting” a 1090 license because the zIIP no longer consumes a license.

By enabling Hyper-Threading his PC, in this example, appears to have eight cores. He can
continue using three CPs and specify a zIIP (or two or three zIIPs, in this example).

Based on limited experience in this environment (Hyper-Threading enabled, 1090-L03, three
CPs, one zIIP) we noted the following:

� The zIIP was used, as expected, by our simple java applications. This was important in
verifying that our applications were behaving as expected.

� When the zIIP was not in use (but with the zIIP defined, and with Hyper-Threading
enabled) our sample workload used slightly more CPU time1 and slightly less elapsed
time than when there was no zIIP and Hyper-Threading was disabled. That is, there was a
small CPU “cost” to having Hyper-Threading enabled, while there was an elapsed time
savings.

� The effects of running more processors and/or more initiators are much more noticeable
with zPDT than with a “real” z System. This tends to make it difficult to provide firm
guidelines for usage.

� Our use of java was light and we did not have any DB2 work. Heavier workloads in these
two areas might change our conclusions.

All formal zPDT testing by IBM occurs with Hyper-Threading disabled. This is the “safe” way
to run zPDT. If you have a larger server, with many cores, there is no need to consider
Hyper-Threading. If you have a very common environment, with an L03 token and a four-core
PC, and verifying zIIP processing is important to you, you might consider our experience
related here.

13.3 cpuopt statement

The cpuopt statement specifies optional parameters for the CPs. These are the only valid
parameters at the time of writing:

cpuopt asn_lx_reuse=on (no blanks in operand)
cpuopt asn_lx_reuse=off (no blanks in operand)
cpuopt zVM_CouplingFacility (no blanks in operand)
cpuopt alr=on,zVM_Coupling (abbreviations)
cpuopt ZARCH_ONLY=NO (upper case, no spaces)

The asn_lx_reuse operand may be abbreviated as alr. The zVM_CouplingFacility operand
may be abbreviated as zVM_CouplingFac or zVM_Coupling. These operands do not contain
blanks, so be certain that no blank exists before or after the equal sign.

The ZARCH_ONLY parameter is new with zPDT GA8, defaults to YES, and is the standard
mode of operation for IBM z14 systems. It causes the z14 to IPL in normal zArchitecture

Attention: We have not experimented with the C/C++ compiler SMP option. This option
provides for parallelization of a program and this might create more exposure for spinloop
problems when using Hyper-Threading.

1 The results mention here are from SMF type 30 records.
252 IBM zPDT Reference and Guide

mode. Specifying ZARCH_ONLY=NO2 causes zPDT to IPL in ESA390 mode, but otherwise
operate as a z14 system. This is a non-standard configuration that might be useful with older
operating systems that are not designed to IPL in zArchitecture mode. Use of this option
creates an environment that is not supported by IBM, and should be used with caution. (The
ZARCH_ONLY function is sometimes documented as the CZAM facility.) IPLing an older
z/OS operating system (that does not support IPL in zArchitecture mode) on a z14 can
produce disabled wait state 19. The ZARCH_ONLY=NO option might be useful in such
situations. The default is ZARCH_ONLY=YES.

The asn_lx_reuse parameter defaults to “on” and this is the normal mode of operation for
zPDT. This mode matches the relevant architecture of IBM z10 and later machines. When
this parameter is set to “off” zPDT indicates that the LX and ASN REUSE facility is not
present. This mode might be useful for running early z/OS releases. The use of alr=off
produces an environment that is not supported or tested by IBM. While it may be useful for
working with earlier z/OS releases, the user must assume all responsibility for correctness of
operation and the correctness of results.

The zVM_CouplingFacility operand is significant only for zD&T systems, which must have the
proper license feature to enable it. In effect, the zVM_CouplingFacility function is always
present for ISV zPDT systems.

13.4 Read-only and shared DASD

Some emulated DASD volumes may be used as read-only volumes. This is done by setting
the Linux permissions to disallow writing to the Linux file that contains the emulated volume.
For example, assuming we have a 3390 volume stored in /z/WORK02, the following Linux
command3 makes it read-only for the owner (normally the Linux userid that started zPDT),
the owning group, and all other user IDs:

$ chmod 444 /z/WORK02 (you may use other forms of chmod, of course)

The execute permission for the file is not relevant. A more detailed permissions setting might
be used, but the result should be to prohibit write permission to zPDT.

Read-only DASD volumes produce informational messages when zPDT is started. When
z/OS accesses the volume an error message might be displayed (probably due to an attempt
to update VTOC statistics) but operation continues in a read-only mode.4 You can browse
data sets, for example. If you attempt to change a data set (with ISPF edit, for example) an
error message is produced and you must cancel the SAVE operation. The error messages
are similar to the following example:

(on the MVS console): IOS000I 0AA0,01,WRI,1D.........
(MVS console and TSO): IEC212I 414-04,IFG0201......

We informally used basic sequential datasets, PDS datasets, and PDS/E datasets without
problems. We were unable to use VSAM datasets on a read-only volume, and this is likely to
be a permanent restriction.

2 The ZARCH_ONLY=NO options also disables the CM390 feature of z14 architecture. This should have no direct
effect for most users.

3 Depending on your Linux file ownership you might need to operate as root to issue this command.
4 We noticed that z/OS 2.1 is less likely to produce error messages than earlier z/OS releases.
Chapter 13. Additional zPDT notes 253

13.4.1 Shared read-only volumes

You can share read-only DASD volumes. The sharing is done at the Linux level and is not
visible to z/OS. You do not use the --shared option with the awsckd entry in your devmap.
Because of the read-only nature of the volumes there is no need to coordinate Linux disk
cache operations. Various Linux facilities are available to share files. The most common is
NFS.

There are many ways you might configure such operation. We implemented a simple
configuration as follows:

1. We placed the intended read-only 3390 volumes (that is, the Linux files containing these
volumes) in a separate directory on our first Linux system. In our case, we named this
directory /z3. We changed the permissions on each file in the directory to read-only. (This
implies, of course, that the data sets on these volumes already contain whatever source
code and data we want to share among our z/OS systems.)

2. We started an NFS server on this Linux system. In our case, we used the openSUSE
YAST interface to configure the NFS server functions and indicated we wanted to export
/z3 as read-only mode (specified as ro). We did not use NFSv4 or GSS security.
Depending on your firewall status, you might need to open a port in your firewall. You can
limit your export operation to specific clients or export to anyone. Other Linux systems
have various methods of configuring NFS server operation and you must use whatever
interface is appropriate for your Linux.

3. We changed our devmap to find the read-only volumes in their new directory (/z3).

4. On our second zPDT machine, we defined a new mount point. In our case, we named this
/z3 to match what we did on our first Linux system, but any mount point name can be
used.

5. We configured an NFS client on this machine, mounting /z3 (from our server) to /z3 (on
our local client).

6. On the client we changed to root and issued a mount command:

mount -t nfs 192.168.1.80:/ /z3

Our NFS server used IP address 192.168.1.80. Note that we needed 192.168.1.80:/ and
not 192.168.1.80:/z35 in the mount command. In principle, we should then see the
shared volumes by issuing ls /z3 command on the client machine. In practice, we
sometimes needed to reboot the client to have the contents of the remote /z3 directory
appear on our client /z3 mount point. The following line appears in /etc/fstab:

192.168.1.80:/z3 /z3 nfs defaults 0 0 (assuming 192.168.1.80 is the server)

7. We changed the devmap for our second zPDT to point to the read-only volumes at their
location in /z3.

8. We then start zPDT and IPL z/OS on the server and client. We were able to access the
shared volumes (read-only) from both systems.

9. If you want to change the contents of a read-only volume, you must disable the client
systems so that no “stale” information is available for volumes. In practice, this probably
means ending zPDT operation and possibly closing down Linux. (We did not explore the
exact details of this scenario.) You end zPDT on the server, change the permissions for

Important: The usage described here requires all access to the volume to be read-only. It
is not suitable, for example, for allowing one zPDT system to have write access, while all
other sharing systems are read-only.

5 This does not appear completely logical to the author, but mount -t nfs 192.168.1.80:/z3 /z3 did not work.
254 IBM zPDT Reference and Guide

the volumes you want to alter, start zPDT, IPL z/OS, make the changes, end zPDT, and
change the file permissions back to read-only. At that point, you can reboot the client
system (or systems) and ensure that they can “see” the volumes at the mount point. This
is not a convenient scenario and read-only operation is not appropriate for volumes that
are frequently updated.

We noticed that zPDT startup on the client was a little slower than with previous operation
and z/OS shutdown (with a quiesce command) was definitely slower.

13.5 Very large PC memory

Large PC memory usually improves zPDT performance. Large memory helps avoid paging
and provides a large Linux disk cache function. In rare cases, very large PC memory6 can
create a problem. The rare problem situation is as follows:

� The z/OS workload is not using especially large memory. For example, DB2 with very
active large tables is not being used.

� The z/OS system is quickly producing large numbers of multiple asynchronous disk
operations (especially write operations).

� RAID5 usage might be involved. RAID57 requires two disk writes for each logical write
operation.

� PC memory is large enough that the Linux disk cache can absorb many gigabytes of disk
output without actually writing to disk.

� At some point Linux decides that it has too many “dirty” pages in the cache and must write
them to disk before allowing more disk operations.8

� z/OS starts seeing disk timeouts, typically as MIH (Missing Interrupt Handler) actions, and
may create a variety of error messages. z/OS will usually eventually resolve the situation
correctly.

We have seen this situation when using pathological test cases. We have very rarely seen it
in normal usage. One extreme example we investigated was as follows:

� The PC server had 160 GB memory.
� z/OS was running under z/VM.
� RAID5 was being used.
� The user had defined five new, full 3390-9 volumes for JES2 spool space.
� When cold starting JES2 the first time, it started formatting the five volumes,

asynchronously, in parallel. (JES2 formatting is very fast and efficient, contributing to the
overloading of the Linux I/O functions.)

� A short time later, the MVS console was flooded with MIH and other error messages. The
system did not recover correctly in this situation.

In this particular case, running the same z/OS functions without using z/VM allowed the JES2
formatting to complete correctly. (There were still MIH and other disk error messages but the
functions completed correctly.) Subsequent use of the z/OS system under z/VM operated
normally.

Recent Linux levels appear to better handle situations such as described here. We stress that
the overrun situations described here are very, very rare. We often use PCs with large
memory (192GB, most recently) with no problems during “normal” z/OS operation.

6 In this case, “large” means at least 100 GB.
7 Most RAID adapters have sizable cache memory. This discussion assumes volumes of data such that the RAID

adapter cache is relatively small.
8 This is probably an inaccurate description of exactly how Linux manages the disk cache, but it describes the

general situation.
Chapter 13. Additional zPDT notes 255

13.6 Token dates and times

The zPDT tokens (and equivalent software-only license manager) remember the latest date
and time that they obtain from the underlying Linux system. The token must never see the
date or time move backward. If this happens, a time cheat message is produced and zPDT
does not start.

For example, if you set the PC date ahead several months (perhaps to test an expiration
function in the application you are developing) and you use zPDT with this advanced date,
you cannot then return to the correct date and use the same token. If you inadvertently used
an incorrect (future) date with the token, and you now find the token unusable with the correct
date, you should contact your zPDT supplier.

If you must temporarily change the PC clock (when not using zPDT), remove the token before
doing this and reset the clock to the current time before connecting the token again. If you
move a token among multiple PCs, you should take care that the hardware time-of-day clocks
reflect times close to each other on all the machines.9

The settod command provided with zPDT provides a way to test software by using different
dates; this does not change the value of the PC hardware clock or the Linux software clock.

13.7 Typing OPRMSG too many times

The default z System console (normally on an HMC) is emulated by zPDT by using the Linux
window that was used to start zPDT. Operating system output sent to the default console
appears in the Linux window. To enter z System commands from the default console (that is,
from the Linux window) use the oprmsg command, as in this example:

$ oprmsg 'CN(*),ACTIVATE'

Typing oprmsg for every input line becomes tedious. The Linux alias function can be used to
assign a single character to create the oprmsg text:

$ alias +=oprmsg (use plus character to create oprmsg)
$ + 'cn(*),activate'
$ + d a,l

A space is needed after the plus sign (+), just as a space is needed after the oprmsg
command before the command text is entered. Remember that single quotation marks might
be needed to prevent the Linux shell from processing special characters such as
parentheses.

13.8 Important Linux command window

The Linux command window that is used to enter the awsstart command is important.
Asynchronous messages from zPDT are sent to this window. (User commands sent to zPDT
can be entered from any Linux window that is operating under the same userid that started
zPDT). Asynchronous messages include zPDT error messages (such as an unexpected CTC
disconnection) and z/OS messages directed to the HMC console.

9 This is a technical statement. Your zPDT license agreement may restrict this usage.
256 IBM zPDT Reference and Guide

If you inadvertently close the Linux command window that is used to start zPDT, you will not
see these asynchronous messages. At present, there is no way to recover the functionality of
this window.

13.9 Linux “out of memory”

In rare circumstances we see an “out of memory” error message from Linux, typically when
starting zPDT. Assuming your zPDT runs correctly most of the time, we believe this message
is usually related to fragmentation of the shared memory locations in Linux. zPDT uses Linux
shared memory extensively and zPDT startup, shutdown, configuration change, startup,
shutdown, and so forth might eventually result in an out-of-memory message. Advanced
Linux users might try to rework shared memory parameters (while zPDT is not running), but
the easiest solution is to reboot Linux. We emphasize that this is a very rare condition.

13.10 The crontab and sudo entries

zPDT places entries in the Linux cron tables, at root level. You can see them as follows:

$ su (change to root)
crontab -l (list crontab entries for root)
 @reboot /usr/z1090/bin/safenet_daemons_restart reboot > /dev/null
 */11 * * * * /usr/z1090/bin/safenet_daemons_restart > /dev/null
exit (leave root)

Remote license servers and UIM functions result in additional cron entries. Do not change or
delete these entries if you use cron functions for other purposes. If you use the
SecureUpdate_authority command, an entry is added to the Linux /etc/sudo file for every
userid you authorize. Do not remove these entries from /etc/sudo.

13.11 Dynamic configuration changes

zPDT does not support dynamic changes to an operational devmap. The selected devmap is
read when zPDT is started (by using the awsstart command) and any changes made to the
devmap after that point are not effective unless zPDT is stopped and restarted.

The most common reason for wanting to change the devmap is to alter the DASD
configuration, usually by adding additional volumes. This can be done with a little planning.
The basic requirement is to include “spare” DASD devices in your devmap, using device
numbers (addresses) valid for your IODF. Here is an example:

[manager]
name awsckd ABCD
device 0A80 3390 3990 /z/H1RES1 (normal emulated DASD definitions)
..... (other DASD definitions)
device 0AB0 3390 3990 (spare device definition)
device 0AB1 3390 3990 (spare device definition)

We could use a spare device to add a new work volume, as follows:

$ alcckd /z/LOCAL4 -s500 -d3390 (create new emulated volume, 500 cyls)
$ awsmount 0AB0 -m /z/LOCAL4 (mount on spare device)
Chapter 13. Additional zPDT notes 257

The new volume has no label or VTOC and cannot be varied online to z/OS. We must run an
ICKDSF job, as follows:

//INITVOL JOB 1,OGDEN,MSGCLASS=X
// EXEC PGM=ICKDSF,REGION=40M
//SYSPRINT DD SYSOUT=*
//SYSIN DD *
 INIT UNIT(AB0) NOVALIDATE NVFY VOLID(LOCAL4) -
 PURGE VTOC(2,1,15)
/*

This job should request the operator to reply U to allow the volume initialization. After the
ICKDSF job completes, the operator can issue VARY AB0,ONLINE command and the volume is
ready for use. You probably will want to change your devmap so that the volume is routinely
available when zPDT is started the next time.

13.12 Security exposures

While most zPDT usage occurs in environments where base Linux security is not a significant
concern, the following items might be of concern to some users.

13.12.1 Reducing root usage

After zPDT is installed, few functions normally require running as root. The most common are
the commands involved in updating the token licenses and the clientconfig command. This
use of root can be avoided by taking the following steps:

1. Select a userid (not root) of someone who will be allowed to use the token update
commands. These commands are SecureUpdateUtility (for zPDT releases prior to GA5),
Z1090_token_update, and Z1091_token_update.

2. As root (probably when installing zPDT) issue the command:

SecureUpdate_authority -a <userid> (specify your selected userid)
 or
/usr/z1090/bin/SecureUpdate_authority -a <userid>

The full path name for the command is needed if you are not in the /usr/z1090/bin
directory when issuing the command.This command is issued only once; it makes an entry
in the /etc/sudo file. To remove a userid from the authorized list issue:

SecureUpdate_authority -d <userid>
or
/usr/z1090/bin/SecureUpdate_authority -d <userid>

3. Thereafter, use the sudo zpdtSecureUpdate command10 while operating as the selected
userid. This command automatically switches to the /usr/z1090/bin directory and
executes the appropriate commands with root authority. The sudo function provides
temporary root authority and the zpdtSecureUpdate command temporarily switches to the
required directory, executes the appropriate token administration command, and returns
to the previous directory.

Intense Linux I/O: The alcckd command, when creating a new emulation volume, creates
intense Linux I/O while it is formatting the volume. This could disrupt or slow concurrent
z/OS operation, especially if significant z/OS jobs are running.

10 This applies to zPDT release GA5 and earlier releases.
258 IBM zPDT Reference and Guide

4. Select a userid (not root) who will be allowed to use the clientconfig command and issue
the following command as root:

clientconfig_authority -a <userid>

A userid may be removed from the authorized list by using a -d flag instead of -a.

5. Thereafter the indicated userid can use the clientconfig command.

As a practical matter, the same userid may be selected for both functions. The ability to
bypass root use with these commands does not alter the operation of the
SecureUpdateUtility, Z1090_token_update, Z1091_token_update, or clientconfig
commands if used by root in the normal way.

13.12.2 Linux suid use

The zPDT system software operates as a normal Linux application with a few exception. The
eDMosa module (that provides the emulated OSA function) operates with Linux root
privileges. That is, it uses suid permission to operate as root, and the permissions are
“world” executable. While we have no indication that this has happened, it might be possible
for a non-zPDT Linux user to execute eDMosa and, in some way, use this to compromise the
base Linux system. The suid module is also visible to programs that scan Linux for
“unapproved” suid files.

You can remove the “world” executable permission, as follows:

1. Select (or create) a Linux group for use only by zPDT functions. The installation
instructions in “zPDT installation” on page 97 suggest creating a group named zpdt,
although the specific name is not important. You can use the GUI administrative functions
of your Linux to add the group (and associate selected userids with the group).

2. Change the ownership of eDMosa to this group. For example,

chgrp zpdt /usr/z1090/bin/eDMosa

3. Change the permissions for eDMosa,

chmod 4750 /usr/z1090/bin/eDMosa

4. Remember that any Linux userid that is to be used to start zPDT must be a member of the
new group. Other userids should not be members of this group.

13.12.3 Gen1 token server monitoring

The Gen1 token software used with zPDT has a web monitoring function. This is not relevant
to normal zPDT operation, but might be construed as an exposure. You can disable this
monitor function as follows:

cd /opt/safenet_sentinel/common_files/sentinel_keys_server
cp -p sntlconfigsrvr.xml sntlconfigsrvr.xml.orig (make backup)
(edit sntlconfigsrve.xml, find <ConfigureLicenseMonitorPort>
 and change 7002 to 0)
./loadserv restart

13.13 z1090instcheck

The z1090instcheck command should be run after the zPDT software is installed and Linux
configuration changes are completed. It should be run again after any Linux updates. The
Chapter 13. Additional zPDT notes 259

output varies somewhat from release to release. Here is an example of the output from
z1090instcheck:

 1. SUSE os level at 11.4 which is greater the minimum level OK
 2. SUSE kernel.shmmax of 18000000000 is greater than min. *NOTE*
 shmmax should be greater than 1.1 times the sum
 of z memory (as specified in your devmap) for
 ALL your 1090 instances.
 3. SUSE (kernel.shmall * PAGE_SIZE) is 4722366482869644165120
 which is greater/equal to kernel.shmmax which is OK
 4. SUSE kernel.msgmni is 512 which is OK
 5. SUSE kernel.msgmax is 65536 which is OK
 6. SUSE kernel.msgmnb is 65536 which is OK
 7. SUSE net.core.rmem_default is 1048576 which is OK
 8. SUSE net.core.rmem_max is 1048576 which is OK
 9. SUSE kernel.core_uses_pid is 1 which is OK
10. SUSE kernel.core_pattern is core-%e-%p-%t which is OK
11. SUSE ulimited -c is set to unlimited OK
12. SUSE ulimited -d is set to unlimited OK
13. SUSE rpm libstdc++45-32bit-(x86_64) is installed OK
14. SUSE sntl-sud-7.5.2-0.i386 rpm is greater than required OK
15. SUSE zpdt-shk-server-1.3.1.2-0.i586 rpm is equal to required level OK
16. SUSE dmidecode-2.11-15.1.x86_64 rpm is greater than required OK
17. SUSE rpm beagle is not installed which is OK
18. SUSE rpm zmd is not installed which is OK

Running uimcheck ...

The UIM client is configured in remote mode.

Local Host Name....... w510.itso.ibm.com
Local Serial Number... 32683
Local machine UUID.... 81402112-2551-CB11-A1F3-D9473378A894

Remote server......... 192.168.1.2
Remote server port.... 9451

The output details include the following lines:

� Line 1 verifies that you are using SUSE (or Red Hat or Ubuntu) and that it is at an
acceptable level.

� Lines 2 and 3 check kernel controls for virtual shared memory. The values shown here are
examples. The shmmax value should be at least as large as stated in the note. The shmall
value shown is typical of a 64-bit Linux distribution. However, some distributions have this
number set much smaller and you might receive a warning message for this line.

� Line 4 (msgmni) is appropriate for a reasonable number of zPDT I/O devices.

� Lines 5 and 6 are needed for OSA operation. The exact values are not important but
should be larger than the default sizes in most distributions.

� Lines 7 and 8 reflect values recommended for heavy OSA usage, or larger frames.

� Lines 9, 10, and 11 reflect parameters for core image files. These are potentially important
if zPDT problems are encountered.

� Line 12 should be set as shown.
260 IBM zPDT Reference and Guide

� Lines 11 and 12 are for the token modules and verify that the correct levels are present.
The levels distributed with zPDT should not be replaced with other versions, even if the
other versions have later levels.

� Line 13 verifies that 32-bit support is installed with Linux. This is needed by the token
modules.

� Line 16 reflects a module that might be useful for debugging. It is not critical.

� Lines 17 and 18 address applications that have caused zPDT problems in the past.

Additional checks might be added to later versions of z1090instcheck. Note that some checks
are absolute while others look for values in a range thought to be appropriate. Your output
from z1090instcheck may differ slightly from what is shown here as minor details may change
with zPDT updates or new Linux distributions.

13.14 zPDT build information

The /usr/z1090/bin/librarybuild text file contains information about the levels of Linux
used to create the current copy of zPDT. In general, you should not use a Linux that is earlier
than the libraries noted in this file.

13.15 CKD versioning

A function is available to allow an emulated 3390 volume to be “reset” to a selected point in
time. This function is known as CKD versioning. The use is as follows:

� A command is issued for selected emulated volumes (which might be all the emulated
volumes in your configuration) to enable versioning. This must be done when zPDT is not
active.11

� zPDT is started, an IPL of an operating system is done, and the volumes are used
normally.

� Later (when zPDT is not running), commands are issued to either commit whatever
changes were made to the volumes or restore the volumes to the exact content they had
when CKD versioning was enabled.

A typical use might be for a demonstration or benchmark. After the demonstration or
benchmark is completed, the volumes can be restored to their original state.

A CKD-emulated volume can be considered to have two versions. Version zero is the original
state of the volume and version one is a volume that has been changed after versioning was
enabled. Only one restore version is possible for changed volumes. That is, multiple
concurrent generations of versions are not possible.

The following commands are associated with CKD versioning:

$ alcckd /z/WORK01 -ve enable versioning for the indicated volume
$ alcckd /z/WORK01 -vr restore volume to original content
$ alcckd /z/WORK01 -vc commit the changes to the volume
$ alcckd /z/WORK01 -vi inquire about the versioning status of the volume
$ alcckd /z/WORK01 -vd disable versioning (if no changes have been made)

These examples use an emulated volume stored in /z/WORK01. You would specify the name
of the Linux file containing your volume, of course.

11 zPDT can be active if the selected volumes are not in the active devmap.
Chapter 13. Additional zPDT notes 261

When changes are made to a track of a version-enabled volume, the original track contents
are saved at the end of the emulated volume file. Only one “original track” is saved;
subsequent changes to the track simply update the track within the emulated volume. If the
volume is restored, the original tracks replace the changed tracks. If the changes are
committed, the original tracks are discarded. Restoring or committing a volume results in a
volume that is not enabled for versioning. It can be enabled again with the -ve option.

The version-enabled status of a volume is carried over subsequent zPDT starts and stops,
and subsequent operating system IPLs. The version-enabled status remains until the volume
is restored or committed. The Linux file size for the emulated volume grows as additional
“original tracks” are stored. In an extreme case, where every track on the volume is changed,
the Linux file will grow to twice its original size. In typical cases, relatively few tracks on a
volume are changed through normal use and the Linux file growth is minor.

If versioning was enabled for a volume, but there have been no changes to the volume, the
-vd option can be used to disable versioning. If there have been changes to the volume
(causing the versioning function to start operation) then the -vd option is rejected. At this point
you must use -vr (to restore the volume to the original state) or -vc (to commit the changes)
to disable the versioning function. The -vi (inquiry) option displays the current versioning
state of the volume and, if versioning is active, displays the number of CKD tracks that have
been versioned.

13.16 1090 messages

Most messages issued by zPDT have unique message numbers. The msgInfo command can
be used to obtain more information about a message. An example of its use might be as
follows:

$ awsckmap aprof1 (check my devmap)
AWSCHK200I Checking DEVMAP file 'aprof9' ...
AWSCHK204I Processed 204 records from DEVMAP /home/ibmsys1/aprof1
AWSCHK208I Check complete, 0 errors, 0 warnings detected.

$ msgInfo AWSCHK208I
AWSINF010I Format:
AWSINF013I AWSCHK208I Check complete, %d error%s, %d warnings detected.
AWSINF013I
AWSINF011I Description:
AWSINF013I The DEVMAP check is complete.
AWSINF013I
AWSINF012I Action:
AWSINF013I Informational message only. No corrective action needed but
AWSINF013I if errors are present the DEVMAP cannot be used to start system.

All message numbers are in the form AWScccnnns, where:

ccc is the component code issuing the message.
nnn is the message number within the component.
s is the message severity (Debug, Information, Warning, Error, Severe, Terminal)

The message code specified on the msgInfo command can omit the AWS prefix and the
severity code. For example, msgInfo chk208 is sufficient. There is also an environment
variable named Z1090_MSG to control message formatting. It may be set to FULL (the
default), CODE (which will only print the message number and no text), TEXT (which prints
262 IBM zPDT Reference and Guide

the message text and no code) and SHORT (which drops the AWS prefix on the message
number).

13.17 TCP/UDP ports

Several TCP/IP ports are used by normal zPDT operations. In most cases a default port
number is used and you should be aware of these port numbers. When using these ports for
connections outside your base Linux machine, you must ensure that any firewall permits the
use of these ports. Port information is as follows:

� The zPDT token device is accessed through TCP/UDP and requires a port number. A well
known port number has been assigned for this device; this is Linux port 9450. The Unique
Identity Manager (UIM) function uses Linux port 9451; this is only meaningful when using
a remote license manager.

� The Gen2 license server, if used, uses port 1947.
� If you use the awsctc device manager, be aware that it uses Linux port 3088 by default.

Additional CTC devices use different port numbers, typically 3089, 3090, and so on.
� The aws3274 device manager (for “local” 3270 connections) typically uses Linux port

3270.
� The migration tool (see Chapter 15, “DASD volume migration” on page 281) uses port

3990 by default.
� The STP function uses port number 4567 by default.
� The Safenet Gen1 license manager provides a status web display page using port 7002.
� If you are operating your base Linux system through VNC, the default port(s) are 5900+N,

where N is the VNC display number.

13.18 Remote operation

A zPDT system (including z/OS) may be operated remotely, using a Linux command window
(Telnet, VNC, or SSH) and TN3270e sessions connected to the base Linux on the zPDT
system. No special techniques or setups are required. As with local operation, having the
TN3270e session for the z/OS console connected before doing an IPL of z/OS is important.

Security considerations in your environment determine whether simple Telnet or the more
secure SSH should be used for the Linux command windows used to control zPDT.

Complete remote operation of a Linux system running zPDT might be most convenient using
VNC. When doing this, it is most convenient to start zPDT from a VNC window. This allows
the owner to disconnect the VNC session and reconnect to it later without affecting zPDT
operation. Managing the VNC server on the base Linux system typically requires a Linux
command-level connection with something like telnet, ssh, or puTTY.

13.19 Many zPDT devices

The current version of zPDT (GA7) has a maximum of 2048 emulated I/O devices for an
instance. If you define more than approximately 100 devices you may need to change Linux
kernel definitions. (See 5.4.1, “Alter Linux files” on page 103 for the steps to alter these
definition.) You may need to alter:

� The total amount of Linux shared virtual memory. This is the kernel.shmall parameter.
� The amount of Linux shared virtual memory available to a process. This is the

kernal.shmmax parameter.
Chapter 13. Additional zPDT notes 263

� The maximum number of shared memory segments. This is the kernel.shmmni
parameter.

� The parameter that relates to the number of Linux semaphores available. This is the
kernel.msgmni parameter.

� The numbers of semaphore devices available. These are the kernel.sem parameters.

The default values for these parameters appears to vary considerably with various Linux
releases. In many cases the default shmall and shmmax parameters are very large and need
not be changed. The other parameters might need to be changed.

Each I/O device defined in your devmap requires approximately 300 KB of shared virtual
memory. The total of these, plus the memory defined for your z System, must be within the
allowed total Linux shared virtual memory. Your defined z System memory size (plus perhaps
20% overhead) must fit within the shared virtual memory available for a process.

The zPDT developers do not have exact formulas for these parameters. The default numbers
created by the /usr/z1090/bin/aws_sysctl script are reasonable for typical zPDT systems with
a few dozen defined devices and, perhaps, around 10 GB defined for z system memory.

We found the following formula for msgmni to be reasonable:

kernel.msgmni = (350 + 3 * number-of-I/O-devices)

This is not an exact formula, but it should produce safe values. Also, if you have more than
approximately 128 emulated I/O devices you should use ulimit -m and -v statements
mentioned in Chapter 5, “zPDT installation” on page 97.

Using multiple zPDT instances, each with a large number of devices, may exhaust the
semaphore space in Linux, resulting in a hang when starting a zPDT instance. This might be
addressed by another kernel parameter:

kernel.sem 250 32000 32 128 (default values in some distributions))
kernel.sem 250 32000 250 1024 (you might try these values)

Unusually large numbers of I/O devices (across multiple zPDT instances), generally in
excess of a total of more than about 1200 devices, may require the shmmni value to be
increased:

kernel.shmmni 8192 (default is typically 4096)

In one rather large case, using 2048 devices in a single zPDT instance, we defined the
following:

kernel.shmmall=4300000000
kernel.shmmax=10000000000 (make larger for larger z System memory)
kernel.shmmni=32000
kernel.msgmni=6500

These numbers might not be optimum, but they worked for us.

13.20 Startup scripts

We created several trivial startup scripts for our z/OS zPDT system, such as this example:

$ gedit start00
cd /home/ibmsys1
awsstart aprof1
sleep 6
264 IBM zPDT Reference and Guide

echo zPDT started
x3270 -port 3270 mstcon@localhost &
sleep 2
x3270 -port 3270 tso@localhost &
sleep 5
ipl a80 parm 0a8200
sleep 2
echo IPL issued

We could then start our system with a single ./start00 command. Our scripts (differing only
in the IPL parm data) were trivial and could be enhanced in many ways. Be certain to allow
sufficient time for the 3270 sessions to start before executing the IPL command.

A better alternative to a Linux startup script is to embed Linux commands in the zPDT device
map. The method for doing this is explained in 3.2, “System stanza” on page 36.

13.21 Suspend and Hibernation

Laptop PCs, in conjunction with Linux software, offer suspend (save to RAM) and hibernation
(save to disk) functions to effectively save the current PC state and transition to a
non-operational state that uses very little power. zPDT is not tested for, and does not
support these functions. These functions become problematical when timed token drivers
or time-dependent LAN connections are involved, such as with zPDT license servers.

However, some zPDT users have reported successfully using these functions. One technique
is to use a z/OS quiesce command before the suspend operation. This allows z/OS to
complete in-progress I/O and prepare other internal operations for a restartable disabled wait.
After restarting the PC, a zPDT restart command (entered in the same zPDT operations
window that was visible before the hibernation) should cause z/OS to resume operation.

We have had erratic experience with this on different PCs and different Linux versions. In one
case, using Fn-7 after “opening the lid” restored the graphic screen and the restart
command worked as expected. In another case we were never able to restart the graphic
screen, while in yet another case the graphic desktop restarted with by itself.

Some users have reported that the token driver or license manager did not restart. A common
symptom is an “invalid license” or “heartbeat missing” for one or more CPs.12 Linux
commands such as the following might help:

service shk_usb restart (older Linux)
service sentinel_shk_server restart (older Linux)
systemctl start sentinel-shk-usb.service (more recent Linux systems)
systemctl start sentinel-shk-server.service (more recent Linux systems)

The systemctl command might be more appropriate than service, depending on the Linux
distribution. The action verb could be start or restart.

You must determine if hibernation or suspend works for you; remember that it is a Linux
function, and not part of zPDT.

12 After these error messages zPDT might acquire the missing license automatically. If this happens, z/OS is
probably unaffected and continues to run. The error messages are seen only in the Linux command window used
to start zPDT.
Chapter 13. Additional zPDT notes 265

13.22 Channel connections

zPDT does not support direct channel (Parallel, FICON or ESCON) connections to traditional
z System devices. Many zPDT customers obtain their zPDT systems through the Information
Technology Company (commonly known as ITC). ITC offers a method of indirectly
connecting zPDT13 to FICON or ESCON control units. This method is based on a hardware
device, sold by ITC, known as a zData Appliance™ and is shown in Figure 13-1. The general
connection arrangement is shown in Figure 13-2. (The trademark “zData Appliance” is owned
by Information Technology Company, LLC.)

Figure 13-1 Typical zBox

A zData Appliance can use FICON or ESCON connections (up to two channels) and can
connect to the Linux zPDT system via Ethernet or USB. The diagram shows only FICON and
Ethernet because these are the most common configurations. The diagram contains a
simplified version of a z Systems disk unit. In practice, a configuration often contains FICON
switches (or ESCON directors) and many more channels connecting to various z System
processors.

Figure 13-2 zBox connection concepts

The zData Appliance contains considerable internal storage, equivalent to multiple 3390
volumes. The general concept is that the zData Appliance copies a complete 3390 volume
image from the z System control unit to internal zBox storage and zPDT then accesses it via
an NFS mount. The zData Appliance can be directed to rewrite the 3390 image (possibly

13 ITC names their complete systems “uPDT” but we use the more familiar name zPDT in this description. More
information is available at www.itconline.com or sales@itconline.com.

3390 drives

Control Unit

Browser
Linux

zPDT

zOS

FICON

Ethernet

z Systems zData Appliance
266 IBM zPDT Reference and Guide

updated by programs running under zPDT) to its original location. Configuration and control
of the zData Appliance is through a browser session connected to it. It is important to
understand that the 3390 drive(s) are not shared in the general sense of z Systems shared
DASD.

The user (on zPDT and the zData Appliance) must coordinate 3390 access with the users of
the z System involved. There is no serialization mechanism involved. When the zData
Appliance is instructed (via the browser) to read or write a 3390 volume, it does it regardless
of concurrent activity on the z System. The necessary coordination should generally ensure
there are no open datasets on the volume when a copy (in either direction) is taking place,
and establish plans to manage catalogs such that the current catalog(s) are available for any
VSAM datasets involved.

This is a brief description of the product; more information is available from ITC.14

13.23 x3270 scripting

The x3270 emulator has a scripting function that is not very well documented. Web searches
for “x3270 scripting” and “x3270if” are good starting points. The following partial script starts
an x3270 session (so you can follow the action by watching it) and logs onto TSO. This
script15 is entered into a simple Linux file in your home directory and this file is later
executed.16

#!/bin/bash
x3270 -socket & (start the x3270 session)
pid=$! (no internal spaces here)
until x3270if -p $pid ''''> /dev/null (four single quotes without spaces)
do sleep 0.1
done
x3270if -p $pid 'connect(“localhost:3270”)'
x3270if -p $pid 'wait()' (wait until 3270 unlocks at writable field)
x3270if -p $pid 'string(“logon ibmuser”)'
sleep 3 (optional; helps watching action)
x3270if -p $pid 'enter'
x3270if -p $pid 'wait()'
sleep 3 (optional)
x3270if -p $pid 'string(“xxxxxxxx”)' (the TSO password)
x3270if -p $pid 'enter'
x3270if -p $pid 'CloseScript()' (see following note)

The CloseScript functions leaves the x3270 session running and you may manually enter
whatever TSO commands are desired. The wait function blocks until the 3270 keyboard is
unlocked and the cursor is positioned on a writable field. The quit function (not documented)
ends the x3270 session.

The scripting function provides multiple ways to save the 3270 screen output, but it does not
provide a way to wait for a particular output string. A user could save the current 3270 screen
(in ASCII character format) and use Linux shell commands to search the saved data for
whatever keywords are needed, but this method quickly turns into a substantial effort in Linux
shell programming.

14 Information Technology Company LLC, 7389 Lee Highway, Falls Church, VA 22042 or sales@itconline.com.
15 We thank Paul Mattes, the primary author of x3270, for help in bypassing a timing problem while producing this

script.
16 Remember to use a chmod command to make the Linux file executable.
Chapter 13. Additional zPDT notes 267

Among the other functions documented for x3270 scripting is a MoveCursor(row,col)
function. It is important to realize that the row and col parameters in this function are
zero-based, while the row and column numbers displayed on the bottom of an x3270 screen
are one-based.

13.24 Premounted tape

It might be convenient to have an emulated tape mounted and ready to use, without MVS
console interactions, after z/OS is IPLed. There are several ways to approach this depending
on your exact requirements. As a starting point, let us assume you have a standard labelled
tape volume (an “awstape” volume) in /home/ibmsys1/TAPE01. We assume the tape (with
tape label) was created by a previous job. In these examples we assume your z/OS IODF
defines address 561 as a 3480 device.17 There is nothing unique to 3480 drives in these
examples; we use it in order to present concrete definitions and commands.

1. You can include the tape in your devmap definitions. For example:

[manager]
name awstape 3000
device 561 3480 3480 /home/ibmsys1/TAPE01

After starting zPDT and IPLing z/OS you can run one job using this volume without
encountering any z/OS mount messages. The job would contain a DD statement
something like the following:

//SYSUT2 DD DISP=(OLD,KEEP),VOL=SER=TAPE01,UNIT=561,DSN=MY.DATA

The DISP could be also be NEW. After the first z/OS job using this tape completes, the
tape is logically dismounted and additional uses will produce z/OS console MOUNT
messages. In general, you would respond to these messages, via a Linux command
window, with

$ awsmount 561 -m /home/ibmsys1/TAPE01

2. Instead of including the tape file name in the device statement, you could include a
command in the devmap, such as:

[system]
memory 8G
processors 3
3270port 3270
command 2 x3270 localhost:3270
command 2 awsmount 561 -m /home/ibmsys1/TAPE01
...
...
[manager]
name awstape 3000
device 561 3480 3480

The usage is the same as in the previous example. That is, the tape is automatically
mounted for the first (and only the first) job that calls for it.

3. Sometime after z/OS is IPLed,18 but before the z/OS job is submitted, you could enter the
following via a Linux command window:

$ awsmount 561 -m /home/ibmsys1/TAPE01

17 This is consistent with z/OS AD-CD releases.
18 Assuming you have tape drive 561 in you devmap, as in the previous example.
268 IBM zPDT Reference and Guide

This, in effect, provides an unsolicited mount and triggers the AVR (Automatic Volume
Recognition) function in z/OS. The next z/OS job that calls for the tape volume will
immediately run without producing any MVS console MOUNT messages.

4. You can issue a mount command from the MVS console:

MOUNT 561,VOL=(SL,TAPE01)

This produces a mount message on the MVS console. You would then enter the
awsmount command via a Linux window:

$ awsmount 561 -m /home/ibmsys1/TAPE01

This usage differs from the other examples in that the tape volume remains mounted after
jobs using it end. That is, you can repeatedly submit jobs that use the volume without
producing mount messages on the MVS console. (This same technique can be used for a
non-labelled tape.)

5. Many z/OS systems invoke the VTAMAPPL program during system startup. This program
executes a series of MVS commands (a “script”). The MOUNT command can be included
in this script. For example, recent z/OS AD-CD system have a script in PARMLIB member
VTAM00 that could be modified similar to the following:

S RRS,SUB=MSTR
S TSO
...
...
PAUSE 2
VARY 561,ONLINE
MOUNT 561,VOL=(SL,TAPE01)
PAUSE 2
VARY 561,ONLINE

This example assumes you have included the file name (/home/ibmsys1/TAPE01 in our
examples) in the device statement in the devmap. This method results in the tape staying
mounted for use in multiple jobs. The second vary 561,online command may be
necessary to complete the mount. In some cases, for reasons the author does not
understand, the mount remains pending after the vary 561,online. In this case, a ready
561 command from a Linux console completes the mount.
Chapter 13. Additional zPDT notes 269

270 IBM zPDT Reference and Guide

Chapter 14. Tape drives and tapes

Tape drive use (for real SCSI tape drives or for emulated tape drives using awstape formats)
might be important to some developers. The zPDT system offers a number of options in this
area.

SCSI tape drives may be used in two ways:

� The awsscsi device manager allows SCSI tape drives to be used by z System programs.

� Several Linux utilities that directly use SCSI tape drives are provided with zPDT. These
utilities may be used when zPDT is not active. These utilities are not associated with
devmaps or a device manager.

In general, zPDT supports the use of SCSI tape drives. However, not all SCSI tape drives
may be usable. The usability depends on the exact tape drive model, the firmware level, the
firmware options selected, and the exact SCSI adapter (and firmware level) that is used.
Several different tape drives have been tested, but we cannot guarantee that your tape drive
will work. We strongly suggest that you work with your zPDT supplier to understand your
SCSI tape drive environment.

This chapter discusses three categories of SCSI tape drives:

� Tape drives using traditional SCSI cables. These are emulated as 3420, 3480, or 3490
drives, regardless of the actual nature of the tape drive.

� IBM 359x tape drives connected with fiber cables that are defined as 3420, 3480, or 3490
drives in the devmap. These are subject to the same comments as when using parallel
SCSI cables.

� IBM 359x tape drives connected with fiber cables that are defined as 3590 drives in the
devmap.

14.1 The awsscsi device manager

Selected SCSI tape drives may be used as “real” tape drives during zPDT operation. The
awsscsi device manager is used and allows the SCSI tape drive to appear as a 3420, 3480,
3490 or 35901 devices.

14
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 271

A typical devmap definition might be as follows:

[manager]
name awsscsi 7000
device 581 3490 3490 /dev/sg5

The 7000 in this example is the arbitrary CUNUMBR operand. This example defines a tape
drive at address (device number) 581. If z/OS is being used, then the current z/OS IODF must
have a corresponding device (IBM 3490) defined for this address. (z/VM detects devices
dynamically and would find a 3490 at this address.)

The appearance to software (as a 3490 in the example above) has no direct relation to the
actual SCSI device type. In this case, /dev/sg5 might be a DLT drive, for example, that has no
physical characteristics of a 3490 drive.2

As shown in Figure 14-1, Linux SCSI devices may be addressed through two interfaces. The
relationship between the st and the sg interfaces can be complicated because the sequence
number used for a given drive is typically not the same number.

Figure 14-1 SCSI driver interfaces

The Linux device for the SCSI tape drive can be changed with the awsmount command, as in
this example:

$ awsmount 580 -u /dev/sg5 (disassociate sg5)
$ awsmount 580 -m /dev/sg3 (mount different drive)

The last operand of the device statement (/dev/sg5 in the example) denotes the SCSI device
to be used. Determining this operand is a bit complicated. Linux can address a SCSI tape
drive in three ways:

/dev/stN (where Nstarts at 0 and is incremented as needed)
/dev/nstN
/dev/sgN

The /dev/stN and /dev/nstN interfaces are for sequential tape devices. The first tape drive on
a Linux system would be /dev/st0; a second tape drive would be /dev/st1, and so forth. The
two forms, /dev/stN and /dev/nstN, differ only in whether a rewind is performed when the
device is closed.3 The /dev/stN and /dev/nstN interfaces are used with the zPDT
stand-alone tape utility functions, such as scsi2tape and tape2scsi, and also by Linux
utilities such as tar and mt. The /dev/stN and /dev/nstN interfaces are not used with the
awsscsi device manager.

1 Usage as a 3590 drive requires a fibre adapter and a “real” 359x drive.
2 IBM did not formally test DLT drives.
3 The /dev/stN device automatically rewinds (whatever this might mean for the actual device) when the device is

closed. The /dev/nstN devices do not provide an automatic rewind.

SCSI
Device

stn interface

sgn interface

zPDT
device
manager

zPDT tape utilities
Linux mt commands
272 IBM zPDT Reference and Guide

The /dev/sgN devices are general SCSI devices and the awsscsi device manager uses the
/dev/sgN interfaces.4 Unfortunately, the N value for a given device is typically not the same in
the stN and the sgN forms. All Linux SCSI devices are assigned sgN numbers, and Linux treats
many of its normal devices as SCSI (even if they are not really hardware SCSI devices).5 The
first (and only) tape drive on a Linux system would be /dev/st0 but it might be /dev/sg7, for
example.

Determine st and sg numbers
If you want to manually determine these interfaces, list /proc/scsi/scsi, as in this example:

$ cat /proc/scsi/scsi
Attached devices:
Host: scsi0 Channel: 00 Id: 00 Lun: 00 (this is sg0)
 Vendor: IBM Model: root Rev: V1.0
 Type: Direct-Access ANSI SCSI revision: 02
Host: scsi2 Channel: 00 Id: 00 Lun: 00 (this is sg1)
 Vendor: IBM Model: 03592E05 Rev: 1C91
 Type: Sequential-Access ANSI SCSI revision: 03

This example shows two SCSI devices (a disk and a tape) that correspond to /dev/sg0 and
/dev/sg1. In this case, /dev/sg1 is the device you specify for the awsscsi device manager,
but any Linux utility uses /dev/st0 or /dev/nst0 for the same tape drive. The devices listed in
/proc/scsi/scsi are in sgN order; sg0 is first, sg1 is second, sg2 is third, and so forth.

You can list both the st and sg interface numbers for all SCSI tape drives connected to your
system with the aws_findlinuxtape command:

$ aws_findlinuxtape
Vendor: FUJITSU Model: M2488E M2488 Rev: 7 C <===> /dev/st0 /dev/sg10
Vendor: IBM Model: 03592E05 Rev 1C91 <===> /dev/st1 /dev/sg11

$ aws_findlinuxtape
No Sequential-Access present

Always remember that the sg number can change from one Linux boot to another if there is
any configuration change.

Permissions
There is another issue with both /dev/stN and /dev/sgN devices: the permission bits must
allow usage by zPDT. Some Linux systems allow general user access to /dev/stN devices by
default; no Linux systems allow general access to /dev/sgN devices by default. You must
change the permissions to allow general access to your device, as in this example:

$ ls -al /dev/sg*
crw-r----- 1 root disk 21, 0 2008-09-03 14:44 /dev/sg0
crw-rw---- 1 root tape 23, 0,2008-99-03 14:44 /dev/sg1
$ su
(enter root password)
chmod 666 /dev/sg1
exit
$ ls -al /dev/sg*
crw-r----- 1 root disk 21, 0 2008-09-03 14:44 /dev/sg0

4 The reason is that the /dev/stN interface does not accept the full SCSI command set that is necessary for some
tape operations. The /dev/sgN interface allows all SCSI tape commands to be passed to the tape drive.

5 The sg numbers are assigned in ascending order by bus and by device on the bus. However, since Linux treats a
number of non-SCSI devices as though they were SCSI, these bus and device numbers are difficult to predict in
advance.
Chapter 14. Tape drives and tapes 273

crw-rw-rw-+1 root tape 23, 0,2008-99-03 14:44 /dev/sg1

In this example, we changed the permissions for /dev/sg1 so that everyone (including zPDT)
can read and write to it. This change (by using chmod) is lost when Linux is rebooted, but is
suitable for many situations. Always verify the correct sgN number first, by listing
/proc/scsi/scsi.

A more permanent change can be made by modifying Linux boot functions. Unfortunately,
there are two problems with this:

� The method of modifying Linux boot functions differs with different Linux distributions. For
example, we might change /etc/rc.local, or /etc/rc.d/rc.local, or
/etc/init.d/boot.local, or another file, depending on the exact Linux distribution.

� We can easily make a general change for stN and nstN devices, but we cannot easily
make a general change for sgN devices. We should not change the permissions to allow
universal access to all /dev/sgN devices; this would allow easy destruction of our Linux
system.

We could place the following lines in /etc/init.d/boot.local (assuming our particular Linux
uses this file):

chmod 666 /dev/st[0-9] change all tape devices
chmod 666 /dev/nst[0-9] change all tape devices
chmod 666 /dev/sg7 change particular SCSI device

Do not use chmod 666 /dev/sg[0-9] because this allows anyone to directly access all the
SCSI devices in your system. Unless you always have exactly the same devices powered up
when you boot Linux, you cannot safely predict the sgN number of a given device.

Block counts
There has been confusion about zPDT use of SCSI-attached tape drives defined as 3490
devices. This definition means the actual device controls and sense information are
transformed (by the awstape device manager) to appear as a 3490.

IBM 3490 tape drives provide a block counter. This counter is 22 bits; the largest count it can
hold is approximately 4 million. If you write to a SCSI-attached tape drive defined as a 3490
(under zPDT) you will receive an end-of-media indication after writing approximately 4 million
blocks. At this point z/OS performs EOV functions and calls for a new tape cartridge
(depending on your JCL, of course). The remaining tape media in the first cartridge is not
used, but the system works correctly otherwise.

This situation is likely to arise only when using a SCSI 359x tape drive that is defined as a
3490 unit in the devmap. If you read a cartridge written by another system (that was not
emulating a 3490 drive) the cartridge might contain more than 4 million blocks. This should
work correctly provided the zPDT z System program does not read the block count from the
tape. If it does, and if the tape position is past the 4 million block point, the z Systems program
will indicate a block count error. What happens at that point depends on the design of the
particular application program. A tape cartridge with more than approximately 4 million blocks
is not fully compatible with 3490 emulation.

14.2 Parallel SCSI adapters

The more recent IBM x System servers (at the time of writing) do not list parallel SCSI
adapters for their standard configurations. We understand this to the following meaning:
274 IBM zPDT Reference and Guide

� IBM did not formally test any of the existing SCSI adapters with these servers.

� There is no known reason why they should not work if the appropriate adapter slots are
available.

� We have informally used the Ultra SCSI 320 series of adapters with xServer 3650 M2 and
3500 M2 machines without problems with our older SCSI tape drives.

For some of our systems, we used openSUSE 11.2 or later for this operation. Other and
earlier distributions, with Linux kernels below the level used in openSUSE 11.2, did not
work with these SCSI adapters on some of our systems. This condition is likely to change
with future Linux distributions. If parallel SCSI operation is important to you, we strongly
suggest that you discuss your zPDT configuration with your zPDT provider.

� There is no defined IBM support for these configurations.

� Parallel SCSI adapters, cables, and devices can be complex. There are different data path
widths, single-ended and differential circuits, low-voltage and high-voltage versions, and a
variety of terminators. If you are not familiar with this area, we strongly suggest you obtain
expert help in configuring your system.

� The newest SCSI devices use fiber connections instead of parallel (wire) connections.

14.2.1 Specific hardware tested

IBM testing involved the following SCSI drives:

� IBM 3592-E05 TS1120 fibre channel attached SCSI tape drive. The drive was at firmware
level 1C91, as determined by the itdtinst1.2LinuxX86 and itdtinst4.1.0.026LinuxX86_64
tools from IBM.

� Fujitsu M2488E parallel SCSI tape drives, with media cartridges compatible with IBM
3480 and 3490 drives. These drives were at firmware level 7.C.01 or 7.xG.01 as
determined through the drives control panel.

� IBM LTO-3 3580 parallel SCSI tape drive. This was at firmware level 5BG4 as determined
by the itdtinst1.2LinuxX86 tool from IBM.

These drives were tested with IBM System x servers x3650-M1 (7979), x3650-M2 (7947),
and x3500-M2 (7939). The following adapters were used:

� Emulex Corporation Zephyr-X LightPulse Fibre Channel Host Adapter (rev 02). This was
at Emulex LightPulse x86 BIOS Version 1.71A0, firmware ZS2.50A, as displayed during
the BIOS startup.

The Linux device drivers (provided in the Linux distribution) were determined by using the
command dmesg | grep Emulex:

– RHEL 5.3 (64-bits): Emulex LightPluse Fibre Channel SCSI driver 8.2.0.33.3p.
– openSUSE 11.1 (64-bits): Emulex LightPluse Fibre Channel SCSI driver 8.2.8.7.
– SLES 11 (64-bits): Emulex LightPluse Fibre Channel SCSI driver 8.2.8.14.

Tip: Be aware that older SCSI drives might require interfaces that are not available with
many current servers. For example, some older drives require SCSI Fast/Wide
High-Voltage Differential adapters. The last generation of these adapters used PCI (not
PCIe) adapter slots in servers but many current servers no longer have these slots. The
details involved in SCSI tape drive usage can be complex. We strongly suggest that you
talk with a knowledgeable zPDT provider about your SCSI tape drive requirements.
Chapter 14. Tape drives and tapes 275

� Q Logic Corporation ISP2432-based 4Gb Fibre Channel to PCI Express HBA (rev 03).
This was at BIOS revision 1.28, as displayed during BIOS startup. The firmware level was
4.04.05 [IP][Multi-ID][84XX] as determined by the ql-hba-snapshot.sh tool from Qlogic.

The Linux device drivers (provided in the Linux distribution) were determined by using the
command dmesg | grep Qlogic:

– RHEL 5.3 (64-bits): Qlogic Fibre Channel HBA Driver 8.02.00.06.05.03-k.

– openSUSE 11.1 (64.bits): Qlogic Fibre Channel HBA Driver 8.02.01.02.11.0-k9.

� Adaptec ASC-29320ALP U320 (rev 10) parallel SCSI adapter, at Adaptec SCSI Card
29320LPE Flash BIOS v4.31.2S1, as displayed during BIOS startup.

Block size
You probably want to use variable block sizes with SCSI tape drives. You can check for this
with these commands:

$ su (switch to root; may not be necessary)
mt -f/dev/st0 status

If the indicated tape block size is 0 bytes, the drive is set for variable block sizes. If not, enter
the following command:

mt -f/dev/st0 setblk 0

Notice that we use the /dev/stN devices rather than the /dev/sgN devices for these
commands. Also, note the Linux must have the mt command installed.

With our older drives and adapters the Linux drivers for Emulex and Qlogic both defaulted to
a maximum block size of 32K. Block sizes larger than 32 K are typically not used by
application programs; however, large block sizes may be used by backup programs (such as
ADRDSSU for z/OS) or by virtual tape managers. (The newer drivers used with the IBM 359x
drives defaulted to 64K maximum block size.)

The following Linux commands were used to set def_reserved_size to 65536:

$ su (change to root)
rmmod sg (removes the sg module)
/sbin/modprobe sg def_reserved_size=65536

(loads the sg module with the default reserved size up to 64k)
cat /proc/scsi/sg/def_reserved_size

(displays the current setting for def_reserved_size)
exit (leave root)

This change allowed both cards to use 64KB reserved buffer size for data transfers. Note that
these commands do not make a permanent change. A Linux reboot puts the default size back
to 32768.

Note that recent Linux releases may have changed these interfaces.

14.3 zPDT 359x Tape Support

ITC6 has worked with zPDT development by testing changes to the awsscsi device manager
that are designed to more fully support FCP attached IBM 3590/3592 tape units. Although
these devices could be physically attached to a zPDT system prior to these awsscsi

6 Information Technology Company LLC, 7389 Lee Highway, Falls Church, VA 22042 or sales@itconline.com.
276 IBM zPDT Reference and Guide

enhancements, they functioned only in a rather basic mode, emulating a 3490 device. The
updated support allows these units to operate in full 359x mode, with minor exceptions.7

All tests were run using openSUSE 12.2 and the Xfce user interface/desktop. The base
zPDT system was driver 45.18 and the AWSSCSI modifications were applied on top of that
release. Other versions or flavors of Linux were not tested and results may be unpredictable.

14.3.1 The FCP Adapters

ITC has tested several FCP adapters, from both Emulex and Qlogic, including older 2 Mb
adapters such as the Emulex LPe1150-E, up to the current FCP adapters offered with IBM
System x, such as the 8Mb Emulex, IBM part number 42D0485. Although most testing was
with Emulex adapters because they seemed more available, we did test with at least one
Qlogic adapter (Dual port, 8 Mb IBM part number 42D0510). In all cases, the FCP driver
included in openSUSE 12.2 functioned correctly and newer/different drivers were
unnecessary.8 Firmware-related issues, even on the oldest adapters, did not occur so the
firmware levels of the various adapters are not documented here. All adapters tested were
PCIe format adapters.

14.3.2 3590/3592 Tape drives

Testing was performed with 3592-J1A and 3592-E05 tape units, and the 3590-H11 with
10-cartridge autoloader.9 There are no configuration options for 3590 devices. These drives
are also known as TS1120 models.

All 3592 drives need to be configured10 for RACK installation; not for LIBRARY installation.
Each drive has two ports. The port you intend to use must be configured as PORT SPEED=Auto
Negotiate, TOPOLOGY=L-Port; HARD ADDRESS is suggested to be set to x88 although not
required.

Performance is limited by the x86 architecture of the underlying hardware platform and the
configuration of the Linux operating system. Consequently, performance numbers cannot be
expressed in meaningful terms. Experience has shown that, generally, the performance is
acceptable for development users, and allows fully compatible interchange of media with
other mainframe data centers.

14.4 zPDT SCSI utilities

Two zPDT utilities can work directly with SCSI tape drives, assuming the Linux system has
access to the SCSI adapter. Standard awstape-format files (in Linux) can be moved to and
from SCSI tape devices using the scsi2tape and tape2scsi commands.

7 One exception is that automated tape library functions are not supported.
8 This may not be true for other/older Linux distributions or for FCP adapters that are not so widely used.
9 ITC also has available single and dual drive models (E05, E06, and E07) that are complete ready-to-run units with

power supplies, IBM FICON® adapter, FICON cable, CE-Panel, and warranty.
10 Configuration changes are entered through an optional CE panel. The drives obtained by the zPDT developers did

not require configuration changes. You might discuss the need for a CE panel with your 359x provider.

Important: Although you might have a 3592 physical SCSI drive, it should be defined as a
3590 in the devmap in order to match a z/OS IODF entry, as in this example,

 device 590 3590 3590 /dev/sg3
Chapter 14. Tape drives and tapes 277

$ scsi2tape /dev/st0 /z/my/TAPE23 (copy SCSI tape to awstape file)
$ tape2scsi /my/tapes/111111 /dev/st0 (write SCSI tape from awstape file)
$ scsi2tape -c /dev/st0 /z/mytape2 (compress the awstape file)

These two commands are typically used when zPDT is not active.11

14.5 Linux SCSI tape utilities

Linux can provide basic tape utility functions through the mt package. This package is not
required for zPDT, but may be useful in other ways. The package is not normally installed by
default. In some cases the mt function is part of the cpio function. You might need some
detective work to find it.

14.5.1 awstape utilities

zPDT users often build a substantial “tape” library on disk, all in awstape format. The
tapeCheck command can be used to verify that a file (which corresponds to a tape volume) is
in the correct awstape format.

$ tapeCheck /z/TAPE01 (verify format of awstape file)

The tape2file command copies an awstape file to a simple byte stream in a Linux file,
removing the awstape control blocks within the file.

$ tape2file /z/mytape /tmp/filex

The card2tape command copies a Linux text file (in ASCII or EBCDIC) to an awstape file as
80-byte records, using the same conversion conventions as the awsrdr device manager:

$ card2tape /tmp/myLinux.stuff /z/tape01 (copy without translation)
$ card2tape -a /tmp/myLinux.xyz /z/tape01 (force translate ASCII to EBCDIC)

The tape2tape command copies an emulated tape volume (an awstape file in Linux) to
another emulated tape volume (another awstape file in Linux):

$ tape2tape /tmp/old.tape /z/new.tape
$ tape2tape -i -s /tmp/old.tape (scan and summarize tape content)
$ tape2tape -c /tmp/old.tape /mine/new.tape (copy and compress)

The -s flag (scan flag) prevents creation of an output file. The -i flag displays a summary of
the contents of the input tape. This command is normally used to compress or uncompress
an awstape volume or to scan the content. A simple copy of an emulated tape volume
(without any additional processing) is easily done with the Linux cp command.

The tapePrint command lists the contents of an emulated tape volume. Data is displayed in
hex and character format. The characters are assumed to be EBCDIC unless the -a flag is
used:

$ tapePrint /tmp/my.awstape.file
$ tapePrint -a /tmp/my.awstape.file | more

Both the card2tape and tape2tape commands can produce compressed awstape files.

11 If the SCSI devices are not in the active devmap, these utilities can be safely used while zPDT is active.
278 IBM zPDT Reference and Guide

14.6 Practical advice

Most SCSI tape drives do not use vacuum columns to help manage tape start/stop times.
Instead they use slower mechanical methods to manage physical tape movement, which
means that starting and stopping the tape cannot be done in typical “tape gap” intervals.

For older types of drives the net effect is usually this:

� If the program (including the operating system elements) issues tape read or write
commands quickly enough, the tape drive will run the tape at full speed.

� If the program (including the operating system elements) does not issue reads or writes
quickly enough, the tape drive will stop after the current data block. The next read or write
might cause the tape drive to “backhitch” (that is, back up the tape for a distance) and then
restart forward movement. This is done to ensure the tape is “up to speed” for the next
read or write operation.

This backhitch movement can greatly reduce the effective data speed of the drive. Not all
drives encounter this; other factors such as internal buffering on newer types of drives can
help avoid it. You can typically hear the effects of a tape drive doing a backhitch for every data
block.

If you encounter this situation, an alternative approach is to use the zPDT SCSI utilities, such
as scsi2tape, to copy the SCSI tape to an awstape emulated tape volume. The SCSI utilities
are fast and should not encounter any backhitching. Your application could then process the
emulated tape volume copy instead of the real SCSI tape volume. This might result in much
faster processing of your tape data.

The SCSI adapters needed to use older SCSI tape drives might not be compatible with newer
servers. One solution is to acquire an older server with appropriate adapters and use it to
convert older tapes into awstape format files. This format can be readily moved to newer
servers running zPDT.
Chapter 14. Tape drives and tapes 279

280 IBM zPDT Reference and Guide

Chapter 15. DASD volume migration

The zPDT package includes a client-server utility for moving 3390 volumes from a remote
z/OS or z/VM system to zPDT. The server portion of this utility runs under z/OS or z/VM on
the remote z System. The remote is typically a large z System, but it could be another zPDT
system. The client portion runs on the base Linux of your zPDT machine.1 The client and
server are connected via TCP/IP. This utility is especially useful when transferring many
volumes to a zPDT system.

The server portion (on the remote z/OS or z/VM) reads all the tracks on a selected volume
and sends them to the client (on the local base Linux). The client transforms it into the
emulated 3390 format used by zPDT and writes it as a Linux file. You then use this file as an
emulated volume under zPDT.

There is no “reverse migration” function available through this client/server operation. If you
need to copy a 3390 volume from zPDT to a “real” 3390 you can use the ADRDSSU program,
as described in 12.8, “Moving 3390 volumes” on page 225.

One volume is processed for each client command that is sent to the server. You can create
a Linux script with multiple invocations. The server portion (on z/OS) requires specific RACF
authorizations. It can copy active volumes, although the usefulness of the copy might be
questionable, depending on the volume activity at the time. The z/VM version requires that
the server program has access to the full volumes being sent.

The speed of the copies depends on the TCP/IP bandwidth between the client and server,
and the contents of each track. A considerable amount of data is involved on a typical 3390
volume; the transmission may take some time.

A conceptual overview is shown in Figure 15-1 on page 282.

15

1 zPDT need not be operational while this utility is being used. Due to expected LAN and disk activity, it is probably
better to use the migration utility when zPDT is not active.
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 281

Figure 15-1 Volume migration overview (z/OS version)

15.1 Warnings

There are limitations on simply copying and using volumes from a z/OS system (and also
from a z/VM system, with slightly different details). These limitations are not related to zPDT
or to the migration utility described in this chapter. A z/OS disk volume is not necessarily a
stand-alone entity, depending on what is on the volume. In particular, if the volume contains
VSAM data sets of any type (including catalogs) then the volume contents are usable only if
the complete VSAM metadata is available. Volume AAA may contain a VSAM data set that is
cataloged on volume BBB. The VSAM information on volume AAA (including metadata in the
VVDS) must be synchronized with the catalog information on volume BBB. In this simple
example, migrating (copying) both volumes might suffice, provided the catalog on volume
BBB is later properly connected to the master catalog on the target system.

In general, volumes that do not contain VSAM data sets (or VVDS material) are safer to
migrate in a stand-alone fashion. Migrating all the volumes of a z/OS system should be safe
because this includes all the relevant catalogs and VSAM data volumes.

A special warning is related to the migration utility described in this chapter. No enqueue or
serialization functions are used by this utility. Transferring an active volume is probably not a
good idea. If the volume is active, it might have logical errors when the transferred copy is
used. For example, the VTOC might not reflect an additional extent that was allocated after
the tracks containing the VTOC were copied, or the contents of a z/VM minidisk on the
volume might be changing as the associated tracks are copied.

With a z/VM system, the VM directory must be synchronized with any migrated DASD
volumes containing minidisks.

Client
program

Linux

z/OS

Source system Target system

3390 volumes

File for
emulated
volume

Linux system
(with zPDT
installed)

zPDT probably
not active

Typical z/OS system
(could be z/VM instead)

etc etc
VTAM

TCP/IP
etc

TSO

Batch
initiator

Server
program

TCP/IP
connection
282 IBM zPDT Reference and Guide

15.2 Operational characteristics of the migration utility

The following characteristics of this utility are important:

� Complete volumes are transferred. This includes IPL text, volume labels, VTOC, and
unallocated space. The logical contents of the volume are not examined. Data sets on the
volume are not recognized. The utility simply copies and transfers all the tracks on the
volume. It does not check whether the tracks are allocated (VTOC or VM equivalents) or in
use (ENQ) or linked to a specific catalog (for VSAM, for example).

� A read track CCW is used to read the data on each track of a CKD volume. The amount
of data on each track is variable. This means the time to transmit a volume is variable,
depending on how much data is on each track.

� Track data is not compressed for transmission.

� The source z/OS or z/VM (where the server component runs) is typically a large z System,
but this is not required. It could be a zPDT system. The receiving Linux side must be a
Linux system with zPDT installed (but probably not active). The received copy of the
source disk volume is stored in the awsckd (or awsfba if appropriate) format used by
zPDT.

� Specific RACF definitions are required for the source z/OS side. These definitions can
protect the utility from misuse.

� The utility server program must reside in an authorized library for z/OS.

� The utility server program is typically started as a batch job. It automatically terminates
after 10 minutes of inactivity.

� The utility client program is run as a normal Linux command. It is possible to create a
script file with multiple transfer commands so that multiple volumes may be transferred in
an unattended manner.

� TCP/IP port 3990 is used by default.2 The port number may be changed when starting the
server and client.

� Both 3380 and 3390 volumes, any size, can be migrated. This includes 3390 EAVs (“large
volumes”).

� In practice, this utility is likely to run unattended because copying multiple volumes can
take considerable time. We suggest you first try a single volume and monitor the operation
while it is running.

� Only one transfer may be active for the server. It is possible to run multiple servers in
parallel (with different IP port numbers for each) but the usefulness of this is questionable.

� The z/OS version is only for the migration of CKD DASD volumes. The z/VM version can
migrate CKD and FBA DASD volumes.

15.3 Installation of the migration utility for z/OS

Several steps are required to install the migration utility:

1. Upload the server module (named ZOSSERV.XMIT) and install it in an authorized z/OS
library. (The server module is provided in the /usr/z1090/bin directory that contains all
the zPDT executables. It is an unloaded PDS member that has been processed by the
TSO XMIT command.)

2 Recent experience suggests that the default is not working. You should specify a port number; use port 3990
unless you have a reason to use a different port number.
Chapter 15. DASD volume migration 283

2. Provide the required RACF definitions.

3. Determine whether TCP/IP port 3990 (on the z/OS side and the Linux side) has been
assigned for other purposes and ensure that the port can pass through any firewalls.

4. Create a batch job to run the server.

15.3.1 Server installation

File /usr/z1090/bin/ZOSSERV.XMIT must first be uploaded (binary) to a z/OS data set with
DCB characteristics RECFM=FB, LRECL=80, BLKSIZE=3120. This XMIT file contains an
unloaded PDS load library with one member. You can begin restoring this material by
preallocating two data sets with the following job:

//OGDEN77 JOB 1,BILL,MSGCLASS=X
// EXEC PGM=IEFBR14
//A DD DISP=(NEW,CATLG),UNIT=3390,VOL=SER=ZBSYS1,SPACE=(TRK,5),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120,DSORG=PS),
// DSN=IBMUSER.SEQ.HOLDING
//B DD DISP=(NEW,CATLG),UNIT=3390,VOL=SER=ZBSYS1,SPACE=(TRK,(3,3,3)),
// DCB=(LRECL=0,BLKSIZE=32760,RECFM=U),DSN=IBMUSER.PDS.HOLDING

(The volser and DSNs are arbitrary. An experienced z/OS system programmer can handle
this upload and installation in multiple ways. We present a basic example here. You can, for
example, use ISPF to create these two holding data sets.)

After the receiving data set is ready, use binary mode and either IND$FILE3 or FTP to transfer
/usr/z1090/bin/ZOSSERV.XMIT to IBMUSER.SEQ.HOLDING. It is a relatively small file. Be certain
to use a binary transfer.

After the module is uploaded to the sequential holding data set, issue the following TSO
commands (using the appropriate data set names, of course):

RECEIVE INDATASET('IBMUSER.SEQ.HOLDING')
INMR901I DATASET
INMR906A Enter restore parameter or 'DELETE' or 'END' +
DATASET('IBMUSER.PDS.HOLDING')
INMR001I Restore successful

The name of the executable module, once restored, is ZPDTMSRV. You must select an
authorized library (preferably on the LNKLST) to contain the server module. You must have
authority to update this library. We use USER.LINKLIB as an example of an authorized library
in the LNKLST, but your system is probably different. Userid IBMUSER typically has update
authority for all system libraries and we use this userid in our example. Again, your system
may be different.

Copy member ZPDTMSRV from your holding PDS to your authorized library. The easiest
way to do this is by using ISPF option 3.3. In the first panel (of ISPF 3.3), make this selection:

Option=====> c
....
(“from” data set name)
Name. ‘IBMUSER.PDS.HOLDING’
(press Enter)
(“to” data set name)
Name.’USER.LINKLIB’
(press Enter)

3 IND$FILE is a z/OS program that works with the “file transfer” function present with many 3270 emulators.
284 IBM zPDT Reference and Guide

. ZPDTMSRV (overtype the period with the letter S
and Enter)

This completes the server installation. The holding data sets can be deleted.

15.3.2 RACF requirements

The server program requires RACF class DASDVOL to be active and the server program
must have at least READ access to all volsers to be transferred. You must determine whether
the DASDVOL class is active and used on the system where you install the migration utility
server. You can do this by logging on to TSO with a userid having RACF SPECIAL authority
and issuing these TSO commands from a READY prompt or ISPF option 6:

SETROPTS LIST (check the list of active classes)
RLIST DASDVOL * (see if any profiles are defined)

If these checks are negative, you can assume that the DASDVOL class is not being used.

DASDVOL not already in use
The next step is to decide whether only certain volumes should be subject to copying by this
migration utility or whether all volumes might be accessed for migration. If you elect to
potentially allow migration of all volumes, enter these TSO commands:

SETROPTS CLASSACT(DASDVOL) (activate the DASDVOL class)
SETROPTS RACLIST(DASDVOL) (optional, but recommended here)
RDEFINE DASDVOL ** UACC(ALTER) (allow universal alter access)
SETROPTS RACLIST(DASDVOL) REFRESH (if you RACLISTed the class)

Be aware that the DASDVOL class is used only by a selected group of utility programs, such
as dump/restore. Allowing UACC(ALTER) does not open all your data sets to access by all
users. Whatever RACF data set protection you have in place (via ADDSD and PERMIT
commands) is still effective.

This is all the RACF setup requires if DASDVOL was not initially active and if you want to
allow the migration server to access any volume. If you want to limit the volumes subject to
migration, you should work with an experienced RACF administrator. The general technique
is to restrict global access to DASDVOL (perhaps with a UACC(NONE) condition) and then
issue PERMIT commands to cover the volumes you want to migrate. For example:

PERMIT VOL123 CLASS(DASDVOL) ID(IBMUSER) UACC(READ)
PERMIT ADCD* CLASS(DASDVOL) ID(IBMUSER) UACC(READ)
SETROPTS RACLIST(DASDVOL)REFRESH (if you RACLISTed DASDVOL)

In this example, volser VOL123 and any volser beginning with ADCD can be accessed by the
migration utility.

The use of the DASDVOL class might have side effects on other utility programs. If
DASDVOL was not active before your migration activities, you might want to deactivate it
when the migration activities are completed:

SETROPTS NORACLIST(DASDVOL)
SETROPTS NOCLASSACT(DASDVOL)

Important: Consult with the RACF administrator for your server z/OS system before
making any RACF changes. This is especially important if the DASDVOL class is active in
the installation.
Chapter 15. DASD volume migration 285

DASDVOL already in use
If you find that the DASDVOL class is active on your server system, we strongly suggest that
you discuss the situation with the system programmers managing that system. Your
requirements are simple: you (meaning the userid who will run the migration server program)
need DASDVOL with READ access to whatever volsers you intend to migrate.

TCP/IP port
By default, the migration programs use TCP/IP port 3990, but this can be changed. You can
look at the TCP/IP PROFILE on the z/OS system to see whether port 3990 is reserved for
another application. However, another application could dynamically acquire the port. There
is no easy way to prevent this. We suggest specifying a different port number only if there are
error messages when you try to start the migration server or client. Someone must also verify
that whatever firewalls are active will allow port 3990 communication.

15.4 Operation of the server under z/OS

The server should not be started until you are ready to use it. It automatically terminates after
ten minutes of inactivity. The following JCL could be used to start the server:

//MIGSERV JOB 1,OGDEN,MSGCLASS=X,TIME=1440
//ZPDTMIG EXEC PGM=ZPDTMSRV,REGION=0M,PARM='3990'
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTCPD DD DISP=SHR,DSN=ADCD.Z21Z.TCPPARM(TCPDATA)

Consider the following notes:

� The TIME=1440 parameter is suggested because transmitting a full volume (or several
volumes) can take considerable time. (It is much less than 1440 minutes!)

� The PARM field specifies the TCP/IP port number to be used. We suggest port 3990
unless you have a specific reason to use a different port.

� The SYSTCPD statement must point to the DATA used by the z/OS TCP/IP stack. You
must determine the correct data set name for your z/OS system. One way to do this is to
examine the procedure used to start TCP/IP on your system.

� If your authorized library is not in LNKLST, you will need a JOBLIB or STEPLIB statement
that references only authorized libraries.

� The user submitting this job must have a userid that has at least READ access to the
appropriate volsers in DASDVOL.

15.5 Installation of the server under z/VM

The z/VM system must be Release 5.4 or later.

The ZVMSERV.XMIT file is located with other zPDT binary material in /usr/z1090/bin on the
zPDT system. This must be uploaded in BINARY, FIXED LRECL 80 format to a CMS user’s
A disk. (This file essentially contains a card deck.)

After this is complete, use the following steps from CMS:

1. Issue the CP SPOOL PUN command.
2. Issue the PUNCH ZVMSERV XMIT A (NOH command.
3. Issue the RDRLIST command.
4. Beside the file in your RDRLIST, issue RECEIVE command.
286 IBM zPDT Reference and Guide

This results in the reconstructed executable file on your CMS A disk, and completes the
server installation.

15.6 Operation of server under z/VM

Your z/VM must have TCP/IP active and connected to the appropriate network. The CMS
user running the migration utility must have access to the volumes to be migrated.

The CMS user starts the utility by issuing a ZVMSERV command; a single operand specifies
the TCP/IP port number and this defaults to port 3990. When started, the server should
indicate that it is waiting for a client connection. The server will time out after 10 minutes
without a client connection.

If a z/VM mini-disk is migrated, it will appear as a small 3390 volume on the receiving system.
That is, it will no longer be a mini-disk on a larger z/VM volume.

15.7 The client commands

There are two client commands:

� hckd2ckd: Used with both z/OS and z/VM to migrate a CKD DASD volume.
� hfba2fba: Used only with z/VM to migrate a FBA DASD volume.

This general syntax of the client commands (entered on the Linux client machine, using a
normal Linux command window) is as follows:

hxxx2xxx host[:port] outfile [-v xxxxxx][-u aaaa]
 [--volser xxxxxx][--unit aaaa]

Where:

host is the TCP/IP name of the system with the matching server program. This might be a
dotted-decimal address or a name that can be resolved by Linux TCP/IP.

:port is a TCP/IP port number to be used by both the client and server program. It
defaults to 3990. Note: recent experience indicates the port number does not default
correctly; we suggest you always include the port number in your command.

outfile is a file name (on the current Linux) system where the migrated volume is placed
(in awsckd, awsfba, or awstape format).

-v or --volser indicates the 3380/3390 volume (on the remote z/OS system) that is to be
copied (migrated).

-u or --unit indicates the address (device number) of the volume that is to be copied
(migrated).

Either the -u or -v parameter must be supplied for DASD, but not both; the -u parameter is
normally used for tapes.

After the server is started on the z/OS or z/VM system, the client may be started on the Linux
system. Remember that zPDT need not be operational for this. (We generally suggest that it
not be operational, because the migration utility can place a heavy load on the LAN interface.)
Examples of commands that could be used to run the client are as follows:

$ hckd2ckd 192.168.1.99:3990 /z/VOL123 -v VOL123
$ hckd2ckd BIG.ZOS.ADDR:3990 /z/VOL678 -u A8F
Chapter 15. DASD volume migration 287

$ hckd2ckd 192.168.1.99:3990 /z/host.WORK23 -v WORK23 --norestart

The first operand is the IP address of the z/OS system where the server is running. The
TCP/IP port number can be changed as shown in the examples, where we use port 3990.
(The server must have been started using the same port number, of course.) The second
operand is the Linux file name used to store the migrated volume. Either the -v or -u
parameter must be specified. The -v parameter is a volser and the -u parameter is a device
address (device number) on the server system; these determine which volume is to be
processed.

15.8 Additional notes

After a volume is migrated to Linux, you can add it to your devmap and access it from zPDT.
You should check the permission bits for the file. (The zPDT system must have read/write
access to it.) Our examples are in terms of z/OS volumes, but the volume could be for z/VM,
z/VSE, or Linux for z Systems.

Linux volumes
We discovered an interesting situation when migrating Linux for z System volumes. Our
particular experience was with SLES-10 SP1 (for z System), but it might apply to other
distributions.

With many Linux distributions, several fstab options can be selected for controlling disk
volume mounts. These include mounting by device name, volume label, UUID, device ID, or
device path. The default is often to mount by device ID. This produces a boot parameter list
(and fstab) something like this:

parameters='root=/dev/disk/by-id/ccw-IBM.750000000M1881.2c23.1c-part1'

This disk identification is unique to the original disk drive and is useless when the volume is
copied or migrated to another disk. In this situation, the migrated Linux volumes could not be
booted. This identification is best changed when installing Linux by selecting the use of a
volume label (for example, LABEL=rootfs) or device name (for example, /dev/dasda1) when
initially creating the disk partitions. The naming can be changed later by carefully editing
/etc/zipl.conf and /etc/fstab. In any event, the naming should be changed before
migrating the volumes. Unfortunately, it is not always obvious how to select which disk
naming convention should be used when installing Linux.

Multiple TCP/IP stacks
A z/OS system with multiple TCP/IP stacks presents an additional complication. In this
situation, an additional step is needed in the server job:

//MIGSERV JOB 1,OGDEN,MSGCLASS=X,TIME=1440
//STEP0 EXEC PGM=BPXTCAFF,PARM='TCP342'
//*
//ZPDTMIG EXEC PGM=ZPDTMSRV,REGION=0M,PARM='3990'
//SYSUDUMP DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSTCPD DD DISP=SHR,DSN=ADCD.xxxx.TCPPARM(TCPDATA)

The BPXTCAFF program is used to associate a specific TCP/IP stack with the current
address space. The PARM value is the job name used to start the desired TCP/IP stack.
288 IBM zPDT Reference and Guide

Typical client usage
A typical use of the client might be as follows:

$ hckd2ckd 192.168.1.81:3990 /z/ZBRES1 -v ZBRES1
AWSHTC090I Host name : 192.168.1.81:3990
AWSHTC091I Restart : No
AWSHTC095I Vol-Ser : ZBRES1
AWSHTC096I Output : /z/ZBRES1
AWSHTC097I Transferring 3990 vooume of 3339 cylinders
AWSHTC098I Cylinder nnnn ...

We found that transferring a fairly full 3390-3 volume on a private 100 Mbps LAN took
approximately 11 minutes. This consumed roughly 150 processor seconds on the source
z/OS system (which was a different zPDT system on a moderate-performance PC).

When the migration is complete, the cylinder number displayed is one less than the actual
number of cylinders transferred. Also, there might be a delay (perhaps up to 30 seconds)
between the last message and the time the command ends. Both these conditions are
normal.

Migrating a list of volumes
Using gedit or another editor, you can create a Linux file named, mig, for example. The mig
files contains this information:

hckd2ckd 192.168.1.81:3990 /z/ZOS111/ZBRES1 -v ZBRES1
hckd2ckd 192.168.9.01:3990 /z/ZOS111/ZBRES2 -v ZBRES2
hckd2ckd 192.168.9.01:3990 /z/ZOS111/ZBSYS1 -v ZBSYS1
hckd2ckd 192.168.9.01:3990 /z/ZOS111/ZBUSS1 -v ZBUSS1
hckd2ckd 192.168.9.01:3990 /z/ZOS111/backup/MYVOL1xx -v MYVOL1

You can start the server program on the z/OS host and then run the commands that are in
your .mig file:

$./mig (execute the commands in file named mig)

This transfers all the volumes that are listed, without any further manual intervention.
Chapter 15. DASD volume migration 289

290 IBM zPDT Reference and Guide

Chapter 16. Channel-to-channel

The awsctc device manager provides channel-to-channel (CTC) functions using TCP/IP
communication paths. As shown in Figure 16-1, the connection can be within the same zPDT
instance, between zPDT instances on the same machine, or between zPDT instances on
different machines. Among other functions, CTC can be used by z/OS for GRS “rings”, NJE
connections, XCF, TCP/IP connections, and so forth.

Figure 16-1 CTC links for zPDT

The awsctc device manager emulates IBM 3088-4 (or 3088-8) control units and devices.1 The
3088 is an older product that provided the “middle” function for connecting two channels to
each other. Each channel saw the 3088 as a control unit that provided a number of devices
(each of which was a connection path). Modern systems have this control unit function
integrated with the channels, and physical 3088 boxes are no longer used. However, the
logical function has not changed.

The devmap stanza for awsctc appears as follows:

[manager]
name awsctc 75
device E40 3088 3088 ctc://otherhost:3088/E42
device E43 3088 3088 ctc://192.168.1.90:3089/E43

16

1 These are parallel channel control units. ESCON and FICON CTC operation are not emulated.

Linux

Linux Linux

zPDT zPDT

zPDT

awsctc awsctc

Linux

zPDT

zPDT

awsctc

awsctc

separate
machines,
TCP/IP link
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 291

The last parameter of the device statement contains three elements:

� A TCP/IP address (in dotted decimal form or as a name that can be resolved by Linux).

� Following a colon, a TCP/IP port number that is to be used on both the local and other
system. The same port number is used on both ends of the connection.2 If multiple CTC
connections are defined a different port number must be specified for each connection.

� Following a slash, the device number (address) of the corresponding CTC device on the
remote system. To specify this, you must know how the devmap is defined on the other
system. The same device number is often used at both ends, but this is not required.

An example of a simple connection between two zPDT instances in two different machines is
shown in Figure 16-2.

Figure 16-2 Simple two-system CTC definition

In this example, two separate zPDT instances are shown. Because they are separate
instances, the CUNUMBR (100 in the example) can be the same in both definitions (but there
is no requirement to do this, of course). Both instances elected to use the same device
number (E40) for the CTC device, although there is no requirement to do this. Both ends of
the connection must specify the same port number (3088 in the example). Each definition
specifies the IP address of the other base Linux system.

Devmap notes
Although the "ctc://" is optional, if a protocol is specified it must be "ctc". The “well known” port
numbers below 1024 cannot be used; the port number must be in the range of 1024 and
65535. The IP address string cannot be specified with an awsmount command.

Each CTC address must be defined. A real 3088 had multiple device numbers defined in
blocks of 8, 16, 32, or 64 devices. For example, a 3088-4 had 16 devices starting at a
specified address. The emulated CTC does not do this. Each specific device number must be
defined.

Status display
The awsstat command may be used to display the status of the CTC device. When the
device’s peer is not yet available, the status flips between connecting and accepting. After the
peer is available, the status changes to either Connected or Accepted. The Accepted side is
considered the A side for protocol conflict resolution. This generally does not make any

2 We use ports 3088 and 3089 for these examples because it is easy to remember. There is nothing special about
this port number.

Linux Linux

zPDT
zPDTawsctc awsctc

192.168.1.60 192.168.1.100

LAN

[manager]
name awsctc 100

device E40 3088 ctc://192.0.168.0.100:3088/E40
device E40 3088 ctc://192.0.168.0.60:3088/E40

[manager]

name awsctc 100
292 IBM zPDT Reference and Guide

difference to the user. After data begins to flow, the Accepted/Connected is shortened to A or
C and the number of send/receive bytes is displayed.

16.1 z/OS use example

Configurations using CTC can be complex. We have taken a basic NJE example, as shown in
Figure 16-3.

Figure 16-3 Trivial NJE setup

The JES2PARM data for system AAA might include the following lines:

NJEDEF DELAY=360,LINENUM=2,JRNUM=2,JTNUM=2,NODENUM=2,OWNNODE=1,
 PATH=1,RESTTOL=100,RESTMAX=8000000,RESTNODE=100,SRNUM=2,
 STNUM=2,MAILMSG=YES,TIMETOL=1440

LINE(1) UNIT=E40,TRANSPAR=YES
NODE(1) NAME=AAA,PATHMGR=NO
NODE(2) NAME=BBB,PATHMGR=NO
CONNECT NODEA=AAA,NODEB=BBB

The JESPARM data for system BBB might include the following lines:

NJEDEF DELAY=360,LINENUM=2,JRNUM=2,JTNUM=2,NODENUM=2,OWNNODE=2,
 PATH=1,RESTTOL=100,RESTMAX=8000000,RESTNODE=100,SRNUM=2,
 STNUM=2,MAILMSG=YES,TIMETOL=1440

LINE1 UNIT=E40,TRANSPAR=YES
NODE(1) NAME=AAA,PATHMGR=NO
NODE(2) NAME=BBB,PATHMGR=NO
CONNECT NODEA=AAA,NODEB=BBB

These examples assume that device number E40 is defined in z/OS as a CTC device. (This
is true for current z/OS AD-CD systems.) Be careful to use the IP address of the remote Linux
system (and not the remote z/OS system) in the devmaps.

The devmap for system AAA might contain the following stanza:

[manager]
name awsctc 300
device E40 3088 3088 ctc://192.168.1.83:3088/E40

The devmap for system BBB might contain the following stanza:

Linux

zPDT

z/OS

z/OS System AAA

192.168.1.63

z/OS System BBB

192.168.1.62

CTC connection

(TCP/IP link)

192.168.1.83

192.168.1.82

Linux

zPDT

z/OS
Chapter 16. Channel-to-channel 293

[manager]
name awsctc 300
device E40 3088 3088 ctc://192.168.1.63:3088/E40

The status of the CTC connection can be monitored with the awsstat command:

$ awsstat E40 (use the correct device number, of course)

The device status usually starts as connecting or accepting, and later switches to connected
or accepted. This may take some time. After the connection is accepted and used, the status
displays byte counts, such as C-160/162.

We found that the best approach is to wait until the CTC link is established before IPL ing
z/OS. The link can be checked with the awsstat E40 command (using the correct device
number for your CTC, of course). This normally takes only a few seconds, but can take longer
in rare cases. We then needed to issue commands on each JES2 to make the connection
operational:

$S N,LINE1 (sometimes needed)
$S LINE1

A job submitted on system AAA could be directed to system BBB for execution by the
following JCL:

//MYJOB JOB 1,OGDEN,MSGCLASS=X,USER=IBMUSER
// XMIT DEST=BBB
//MYJOB2 JOB 1,OGDEN.MSGCLASS=X,USER=IBMUSER
//STEP1 EXEC PGM=IEFBR14

Notice the two JOB statements in this example. The first is needed to “introduce” the XMIT
statement into the job stream. The XMIT statement sends everything after it to the indicated
node, including the second JOB statement. The first JOB statement (before the XMIT) is not
sent to the remote node.

The following JES2 commands might be useful when working with this NJE connection:

$DCONNECT (very useful status display)
$S LINE(1)
$S N,LINE1 (discover dynamic connections)
$D NODE(*)
$D LINE
$D DESTID(*)
$D PATH(*)
$P LINE(1) (stop line)
$E LINE(1) (reset line)
$D NJEDEF (display NJE definitions)
$N,D=BBB,’$D NJEDEF’ (send JES2 command to other node)

A JES2 cold start may be necessary to enable NJE changes to JES2PARM. You need to stop
the line, $P LINE(1), when stopping JES2. If the $P is not effective, try $E LINE(1) followed by
$P LINE(1).
294 IBM zPDT Reference and Guide

16.2 Multiple instances and z/VM

The following material outlines several uses of CTC connections with two instances of z/VM.3
This material is intended as a general overview and does not provide complete step-by-step
instructions for implementation and usage. It is very unlikely that all the links shown in this
example will be present in any practical system.

16.2.1 Devmaps

Three devmaps are needed for these examples. One is for a group controller (for shared
devices) and two are for the z/VM instances. Many of the choices are arbitrary.

Group controller (ibmgroup)
[system]
members ibmsys1 ibmsys2
3270port 3270

[manager]
name aws3274 0002
device 0020 3279 3274
device 0021 3279 3274 # more devices could be included

[manager]
name awsosa 0009 --path=A0 --pathtype=OSD --tunnel_intf=y
device 0E00 osa osa
device 0E01 osa osa
device 0E02 osa osa

ibmsys1 instance
[system]
memory 1024m
processors 1
group ibmgroup

[manager]
name awsckd 0001
device 1000 3390 3990 /z1/540res #unshared disks
device 1001 3390 3990 /z1/540spl
device 1002 3390 3990 /z1/540pag
device 1003 3390 3990 /z1/540w01
device 1004 3390 3990 /z1/540w02

[manager]
name awsctc 0075
device 700 3088 3088 ctc://localhost:3700/700 #for TCPIP
device 700 3088 3088 ctc://localhost:3701/701 #for TCPIP
device 710 3088 3088 ctc://localhost:3710/710 #for TSAF
device 720 3088 3088 ctc://localhost:3720/720 #for ISLINK
device 740 3088 3088 ctc://localhost:3740/740 #for RSCS

3 Thanks to Bruce Hayden, of the Washington Systems Center, for this material.
Chapter 16. Channel-to-channel 295

ibmsys2 instance
[system]
memory 1024m
processors 1
group ibmgroup

[manager]
name awsckd 0001
device 1000 3390 3990 /z2/540res #unshared disks
device 1001 3390 3990 /z2/540spl
device 1002 3390 3990 /z2/540pag
device 1003 3390 3990 /z2/540w01
device 1004 3390 3990 /z2/540w02

[manager]
name awsctc 0075
device 700 3088 3088 ctc://localhost:3700/700 #for TCPIP
device 700 3088 3088 ctc://localhost:3701/701 #for TCPIP
device 710 3088 3088 ctc://localhost:3710/710 #for TSAF
device 720 3088 3088 ctc://localhost:3720/720 #for ISLINK
device 740 3088 3088 ctc://localhost:3740/740 #for RSCS

Description
Notice that each instance has its own copy of the z/VM disks; they are in separate directories:
/z1 and /z2.

ISLINK
An ISLINK creates an ISFC (Inter-System Facility for Communications) connection. It is the
easiest link because it involves only CP commands and does not require a virtual machine or
userid. The VM system identifiers of the two connected systems must be different. Using the
devmaps shown above, the following commands (issued by MAINT, for example) activate the
link:

CP ACTIVATE ISLINK 0720 (command on ibmsys1)
CP ACTIVATE ISLINK 0720 (command on ibmsys2)

This should result in the message HCPALN2702I Link 0720 came up. The command Q ISLINK
can be used to display the status of the connection.

TSAF
TSAF is an older function and probably would not be used if ISFC is available. To try it, use
commands such as the following (issued by MAINT on both systems):

CP XAUTOLOG TSAFVM
CP ATT 0710 TSAFVM

Then, log on to TSAFVM and enter ADD LINK 0710 on both sides. The status of the links can
be displayed with Q LINKS ALL.

RSCS
RSCS can be more complicated. The RSCS product is not enabled by default. You can check
this with the command Q PRODUCT STATE ENABLED. If RSCS is not in the list, it can be enabled
(using MAINT) by the command SERVICE RSCS ENABLE followed by PUT2PROD.
296 IBM zPDT Reference and Guide

A configuration file is necessary on each system. The configuration files are placed on the
RSCS 191 disk with the name RSCSTCP CONFIG. An example for each system might be as
follows:

(for ibmsys1)
LOCAL IBMSYS1 * RSCS
LINKDEFINE IBMSYS2 TYPE NJE LINE 740 QUEUE PRI NODE IBMSYS2
PARM IBMSYS2 STREAMS=2 MAXU=2 MAXD=10 LISTPROC=NO TA=1 TAPARM='TH=100'

AUTH * OPERATOR * CP
AUTH * MAINT * CP

(for ibmsys2)
LOCAL IBMSYS2 * RSCS
LINKDEFINE IBMSYS1 TYPE NJE LINE 740 QUEUE PRI NODE IBMSYS1
PARM IBMSYS1 STREAMS=2 MAXU=2 MAXD=10 LISTPROC=NO TA=1 TAPARM='TH=100'

AUTH * OPERATOR * CP
AUTH * MAINT * CP

After the configuration files are available, start RSCS with the command XAUTOLOG GCS
(issued on both systems). After RSCS starts, issue the command SMSG RSCS START IBMSYS1
on ibmsys2 and SMSG RSCS START IBMSYS2 on ibmsys1. The status of the RSCS connection
can be displayed with SMSG RSCS Q SY.

TCP/IP
TCP/IP requires a pair of CTC links, one for read and one for write. The easiest way to set up
TCPIP for z/VM is with IPWIZARD. With this you must assign host names and domain names;
in an isolated environment these can be arbitrary names. For an isolated environment with
only two nodes the gateway address does not matter; you might use 10.1.1.1.4 Use CTC0 as
the interface name and address 0700 (from our sample devmap). We assigned IP address
10.1.1.2 to ibmsys1 and 10.1.1.3 to ibmsys2, and used a mask of 255.255.255.0. The
configuration dialog includes positional parameters to indicate which device to use as the
read channel and which to use as the write channel. This parameter could be 0 on ibmsys1
and 1 on ibmsys2. The status of TCPIP can be checked by:

VMLINK TCPMAINT 592
NETSTAT DEVL

You can force TCPIP to restart with the following commands:

FORCE TCPIP
XAUTOLOG TCPIP

4 Remember that the default address of the tunnel connection to the base Linux is 10.1.1.1. This default is used in
the sample devmap.
Chapter 16. Channel-to-channel 297

298 IBM zPDT Reference and Guide

Chapter 17. Cryptographic usage

A zPDT system can emulate multiple cryptographic adapters as CEX5S devices.1 Each
CEX5S emulated adapter runs as separate Linux processes. If sufficient base prcessor cores
are available to permit these threads to be dispatched in parallel by Linux, the emulated
adapters can run asynchronously with the zPDT CPs.

Do not confuse a cryptographic adapter with the cryptographic instructions that are always
available with a zPDT system. These are the KM, KMC, KIMD, KLMD, KMAC, and
associated instructions (known as the CPACF instructions) that provide a number of
fundamental cryptographic operations. Also, note that the terms cryptographic adapter and
cryptographic coprocessor are used synonymously in this document.

The cryptographic instructions may be coded directly in a program or used through ICSF2
programming interfaces. For practical purposes, the cryptographic coprocessor facilities are
available only through ICSF programming interfaces.

17.1 Background information

A cryptographic coprocessor is represented by an adjunct processor (AP) process in zPDT. A
System z CP sends and receives work entries through coprocessor queues that are known
as domains.

The accelerator mode and customized (UDX) functions of a cryptographic coprocessor are
not provided for zPDT. Trusted Key Entry (TKE) systems, which are personal computers with
unique software and an appropriate cryptographic adapter, are not used with zPDT.

Each emulated cryptographic coprocessor has 16 domains;3 each z/OS instance uses a
different domain (this is specified in the ICSF parameters). If multiple coprocessors are
defined, then z/OS uses the same domain in each coprocessor. If multiple coprocessors are
defined, z/OS can dispatch requests to all of them (using the same domain number in each
processor).

17

1 This assumes using zPDT GA7. Earlier releases of zPDT had earlier levels of CEX functionality.
2 This is the Integrated Cryptographic Service Facility.
3 CEX5S functionality on a larger System z has more domains; zPDT is limited to 16 domains.
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 299

With zPDT, the cryptographic coprocessor keys (and other state information) are stored in the
~/z1090/srdis directory. There is a separate subdirectory for each defined coprocessor. The
subdirectory name is simply the coprocessor number. For example, ~/z1090/srdis/5 would
contain the data for coprocessor number 5. These directories are created automatically by
zPDT.

Any tampering with this information can produce unpredictable results. However, a complete
coprocessor subdirectory may be deleted as a way of reinitializing (zeroing) that coprocessor.
(The ap_zeroize command, described later, is the recommended way to reinitialize a
coprocessor.)

It is important to understand that zPDT cryptographic functions are intended for development
purposes and not for security. While the format of the key data in ~/z1090/srdis is not
documented, it is certainly not secure in any cryptographic sense.

17.2 Devmap specification

The zPDT specification for emulated cryptographic adapters is part of the devmap and
consists only of a simple adjunct-processors stanza:

[system]
memory 8000m
3270port 3270
processors 2

[adjunct-processors]
crypto 0
crypto 1 #(more than one cryptographic adapter is possible)

[manager]
name

The zPDT architecture allows up to 16 or 64 cryptographic coprocessors, depending on the
overall configuration.4 z/OS allows a maximum of 16.

17.3 Initial ICSF startup

For practical purposes, the ICSF software functions are needed to initialize cryptographic
adapters. The following is a brief outline of the steps we took to customize and use the ICSF
panels on a z/OS AD-CD 2.2 system. The use of the AD-CD system PARMLIB and PROCLIB
is not required, of course, so adjust these names for your needs.

Recent AD-CD z/OS releases automatically start CSF and have the basic customization to
use both the CPACF instructions (which are always enabled) and CEX5S functions (if defined
in your devmap). The most recent z/OS AD-CD (at the time of writing) uses ICSF level
HCR77B0.

With earlier versions of CSF we used two additional parameters that are not included in the
current AD-CD z/OS 2.2 systems. These were:

� In the PARMLIB member CSFPRM00:

CKDSN(CSF.CSFCKDS)

4 A zPDT group controller instance may have up to 64 coprocessors defined, otherwise the limit is 16.
300 IBM zPDT Reference and Guide

PKDSN(CSF.CSFPKDS)
COMPAT(NO)
DOMAIN(0) <-- We added this in earlier systems
SSM(NO)
KEYAUTH(NO)
CHECKAUTH(NO)
TRACEENTRY(1000)
USERPARM(USERPARM)
REASONCODES(ICSF)

� In the PARMLIB member IKJTSO00:

AUTHPGM NAMES(/* AUTHORIZED PROGRAM NAMES */ +
 ...
CSFDAUTH /*THIS WAS ALREADY IN OUR AD-CD SYSTEM */ +
CSFDPKDS /*WE ADDED THIS ONE */ +

AUTHTSF NAMES /*PROGRAMS...... */ +
....
CSFDAUTH /*THIS WAS ALREADY IN OUR AD-CD SYSTEM */ +
CSFDPKDS /*WE ADDED THIS ONE */ +

Be certain to copy the plus signs (+) at the end of each line!

We do not know if these are still required, but they seem to do no harm.

To begin customization of a cryptographic coprocessor, go to ISPF option 6 and enter the
command @ICSF. This should produce the first ICSF panel, similar to that shown in
Figure 17-1.

Figure 17-1 First ICSF panel

On this panel, select option 1. This should produce a display similar to Figure 17-2. This
panel verifies that the coprocessor is active. The “5C00” nomenclature varies with releases.

HCR77B0 -------------- Integrated Cryptographic Service Facility--------------
 OPTION ===>
 Enter the number of the desired option.

 1 COPROCESSOR MGMT - Management of Cryptographic Coprocessors
 2 MASTER KEY MGMT - Master key set or change, CKDS/PKDS Processing
 3 OPSTAT - Installation options
 4 ADMINCNTL - Administrative Control Functions
 5 UTILITY - ICSF Utilities
 6 PPINIT - Pass Phrase Master Key/CKDS Initialization
 7 TKE - TKE Master and Operational Key processing
 8 KGUP - Key Generator Utility processes
 9 UDX MGMT - Management of User Defined Extensions

 Licensed Materials - Property of IBM
 5694-A01 Copyright IBM Corp. 1989, 2009. All rights reserved.
 US Government Users Restricted Rights - Use, duplication or
 disclosure restricted by GSA ADP Schedule Contract with IBM Corp.

 Press ENTER to go to the selected option.
 Press END to exit to the previous menu.
Chapter 17. Cryptographic usage 301

Figure 17-2 Verify that the cryptographic coprocessor is online

Use F3 to return to the first ICSF panel and select option 6. This option allows you to enter a
pass phrase that is then automatically used to initialize the basic coprocessor master keys.
(An alternative method for initializing master keys is to use multiple other functions on the
ICSF panels. Unless you are familiar with cryptographic coprocessor management, we
suggest that you use the simple pass phrase initialization process we describe here.)

Complete the pass phrase panel as shown in Figure 17-3 (using your own pass phrase, of
course). You need to enter your pass phrase, two data set names, specify no KDSR format,
and a character to select the Initialize system option. The two dataset names shown in the
example (CSF.SCSFCKDS and CSF.SCSFPKDS) are preallocated but empty in the current
AD-CD z/OS system.

------------------------- ICSF Coprocessor Management -------- Row 1 to 1 of 1
 COMMAND ===> SCROLL ===> PAGE

 Select the coprocessors to be processed and press ENTER.
 Action characters are: A, D, E, K, R and S. See the help panel for details.

 COPROCESSOR SERIAL NUMBER STATUS AES DES ECC RSA P11
 ----------- ------------- ------ --- --- --- --- ---
 . 5C00 01D90000 Active I I I I
 ******************************* Bottom of data ********************************
302 IBM zPDT Reference and Guide

Figure 17-3 Pass phrase panel

The KDSR format question defaulted to Y; this was not accepted and we changed it to N.

When we executed or exited from this panel, we received an 047 ABEND. (This was in the
AD-CD z/OS 1.10S, 1.11, 1.12, 2.1 and 2.2 systems.) However, the keys appeared to have
been completed correctly.

Start ICSF again and select option 1. Overtype the initial period in front of the 5C00
coprocessor name with the letter S and press Enter. This produces a display similar to that
shown in Figure 17-4 on page 304; your details will differ but you should see that the current
master key for CKDS and PKDS is VALID.

---------------- ICSF - Pass Phrase MK/CKDS/PKDS Initialization ---------------
 COMMAND ===>

 Enter your pass phrase (16 to 64 characters)
 ===> Bill’s secret pass phrase___

 Select one of the initialization actions then press ENTER to process.

 X Initialize system - Load the AES, DES, ECC, and RSA master keys to all
 coprocessors and initialize the CKDS and PKDS, making them the active key
 data sets.

 KDSR format? (Y/N) ===> N

 CKDS ===> ‘CSF.SCSFCKDS’
 PKDS ===> ‘CSF.SCSFPKDS’

 _ Reinitialize system - Load the AES, DES, ECC, and RSA master keys to all
 coprocessors and make the specified CKDS and PKDS the active key data
 sets.
 CKDS ===>
 PKDS ===>

 _ Add coprocessors - Initialize additional inactive (Master key incorrect)
 coprocessors with the same AES, DES, ECC, and RSA master keys.

 _ Add missing MKs - Load missing AES and/or ECC master keys on each active
 coprocessor. Update the currently active CKDS and/or PKDS to include the
 MKVP of the loaded MK(s).

 Press ENTER to process.
 Press END to exit to the previous menu.
Chapter 17. Cryptographic usage 303

Figure 17-4 Coprocessor status after setting pass phrase

This completes the basic cryptographic coprocessor setup. We suggest you do not experiment with
option 2 (MASTER KEY MGMT) functions unless you are certain you know what you are doing.

 ---------------------- ICSF - Coprocessor Hardware Status ---------------------
 COMMAND ===> SCROLL ===>
 CRYPTO DOMAIN: 0

 REGISTER STATUS COPROCESSOR 5C00
 More: +
 Crypto Serial Number : 01D9T740
 Status : ACTIVE
 AES Master Key
 New Master Key register : EMPTY
 Verification pattern :
 Old Master Key register : EMPTY
 Verification pattern :
 Current Master Key register : VALID
 Verification pattern : BCB28DF1FA0FC8EF
 DES Master Key
 New Master Key register : EMPTY
 Verification pattern :
 Hash pattern :
 :
 Old Master Key register : EMPTY (Your details for this
 Verification pattern : panel will vary slightly)
 Hash pattern :
 :
 Current Master Key register : VALID
 Verification pattern : 2D7BDF2F5A7ADF9C
 Hash pattern : 071B3CB4761DCDE4
 : E1D3675B90E977C7
 ECC Master Key
 New Master Key register : FULL
 Verification pattern : xxxxxxxxxxxxxxxx
 Old Master Key register : EMPTY
 Verification pattern :
 Current Master Key register : VALID
 Verification pattern : DB17D4FE5087CFE8
 RSA Master Key
 New Master Key register : EMPTY
 Verification pattern :
 :

 Press ENTER to refresh the hardware status display.
 Press END to exit to the previous menu.
304 IBM zPDT Reference and Guide

17.4 Operational notes

CSF must be started (as a started task) in order to use it. This is automatically done in current
AD-CD z/OS releases. You can easily verify CSF operation by going to omvs and issuing the
following command:

od -An -N4 -td /dev/random

If CSF is not working, the result is an internal error message. If these functions are working, a
random number is displayed.

The zPDT cryptographic coprocessor emulation functions are intended for use by developers
who require these functions. It should be clearly understood that, while using zPDT, these
emulated functions are not intended to produce a secure system or to function as a secure
peer when dealing with private data.

The zPDT system stores the coprocessor internal data in the ~/z1090/srdis directory. There
is a subdirectory for each defined coprocessor; the master keys and other functional data are
stored in the subdirectory. The data formats in these records are not documented, but they
should not be considered cryptographically secure.

If you used a pass phrase for initialization, record the exact characters used (including upper
or lower case, spaces, and punctuation). You need this to recreate the same master keys if
you reinitialize the cryptographic functions or want to create duplicate keys on another
System z.

17.4.1 Multiple zPDT instances

zPDT may have multiple instances in operation. These instances may have shared facilities,
such as shared DASD. If shared facilities are used, then a zPDT controller instance5 must be
present as described in Chapter 10, “Multiple instances and guests” on page 199.
Coprocessors defined in the controller instance may be shared by all zPDT instances. A
maximum of 16 coprocessors may be present in a “normal” zPDT instance. A maximum of 64
coprocessors may be defined for a controller instance.

An additional devmap statement:

domain <member name> a y #(a is a coprocessor number, y is a domain number)

is used in the devmap of a zPDT instance that is using coprocessors defined in the controller
instance. The member name is required if the domain statement appears in the controller
instance; it is used if the domain statement is in an operational instance devmap. The domain
number (y in the statement above) can be a single number, a list of numbers separated by
commas, or a range of numbers separated by a dash. The angle brackets around the
member name are not part of the syntax; they indicate an optional parameter here.
Remember that the domain numbers must be specified in the ICSF startup parameters and
are different for each z/OS instance/

Three shared cryptographic coprocessors, used by three zPDT instances, might be defined
as follows:

#-------------- controller instance ----------------------
[system] #no processor is defined for the controller
...

5 Very briefly, a controller instance is a zPDT instance (with a separate devmap and started with an awsstart
command) that does not contain any System z processors.
Chapter 17. Cryptographic usage 305

...
[adjunct-processors]
crypto 0
crypto 1
crypto 2

#------------- 1090 instance 1 ---------------------------
[system]
processors 1
...
[adjunct-processors]
domain 0 1
domain 1 1
domain 2 1

#------------- 1090 instance 2 ---------------------------
[system]
processors 1
...
[adjunct-processors]
domain 0 2 #All the domain statements
domain 1 2 #could be in the controller
domain 2 2 #devmap instead. Your choice.

#------------- 1090 instance 3 ---------------------------
[system]
processors 1
...
[adjunct-processors]
domain 0 3 #If the domain statements are in the
domain 1 3 #controller devmap, they need the relevant
domain 2 3 #member name as the first parameter.

Notice that each 1090 instance has a different domain number specified in the domain
statements. In this example the domain numbers are the same as the instance numbers, but
this is just a coincidence. zPDT supports a maximum of 16 domains for each emulated
coprocessor.

17.4.2 Coprocessor control commands

A number of commands are included for specialized management of the cryptographic
coprocessors. These commands are issued from a Linux terminal window. zPDT must be
operational for these commands to be used. They are not needed for normal system use and
we suggest you do not experiment with them unless you have a fairly good understanding of
what you are doing. In the following commands the n variable is the cryptographic
coprocessor number and the y variable is a domain number.

Briefly, the commands are as follows:

� This command reinitializes (zeros) all the data, such as keys, that is retained by the
coprocessor. The first version of the command affects only the specified domain. The
second version (with the -i operand) zeros the whole adapter. Either -i or -d y must be
specified (with an appropriate domain number for y).

$ ap_zeroize -a n -d y
$ ap_zeroize -a n -i
306 IBM zPDT Reference and Guide

� This command queries basic status and domain information. With no operand it lists the
coprocessors available to the System z. With an operand, it lists which domains are used
by the indicated coprocessor.

$ ap_query
$ ap_query -a n

� This command creates a new (emulated) cryptographic coprocessor.

$ ap_create -a n

� This command removes the indicated coprocessor process if it is not connected to a CP
process.

$ ap_destroy -a n

� These commands vary online or vary offline connections between coprocessors and their
processing queues. The optional y operand specifies a domain number.

$ ap_von -a n
$ ap_von -a n -d y
$ ap_voff -a n
$ ap_voff -a n -d y

� This command lists vital product data for the indicated coprocessor.

$ ap_vpd -a n

When a zPDT instance is started (while processing the devmap) an ap_create is
automatically issued for that instance. If this is a stand-alone zPDT instance, ap_von
commands are issued for all domains. (It is not issued for a controller instance.) If this is a
zPDT instance using shared coprocessor resources, ap_von commands are issued for the
coprocessors and domains specified in the devmap.

The “real” cryptographic coprocessors on large System z machines have similar control
functions, but they are performed in different ways. Do not attempt to use these commands,
as listed here, on larger machines.

17.4.3 New z/OS releases

The coprocessor master keys, stored in the Linux srdis subdirectory, must be consistent with
the data in the CSF.CSFCKDS and CSF.CSFPKDS data sets in z/OS. If you install a new
z/OS release and create new z/OS data sets you must initialize the new data sets or copy the
contents of the old data sets to the new data sets.

For long-term cryptographic usage, you should place the CSF.CSFCKDS and
CSF.CSFPKDS data sets on local volumes that will be used with all the releases of z/OS that
you might want to invoke.

If you plan to work with encrypted data (as opposed to simply developing programs that use
encryption functions) you need to carefully plan backups for the coprocessor data (in the
srdis subdirectory) and the z/OS data sets used by CSF. The zPDT functions have no
special way to recover lost encryption keys.

17.4.4 Programming with CSF

Following is a trivial program that uses the cryptographic coprocessor (via an CSF
programming interface) to obtain random numbers:

//OGDENYZ JOB 1,OGDEN,MSGCLASS=X
Chapter 17. Cryptographic usage 307

//A EXEC ASMACLG,PARM.C=’NOXREF’,PARM.L=’NOLIST,NOMAP’
//C.SYSIN DD *
 PRINT NOGEN
ICSFAA CSECT
ICSFAA AMODE 31
ICSFAA RMODE 24
 STM 14,12,12(13) SAVE CALLER’S REGISTERS
 LR 12,15 USE ENTRY-POINT BASE REGISTER
 USING ICSFAA,12
 LR 2,13 GET A(CALLER’S SAVEAREA)
 LA 13,SAVEAREA GET A(MY SAVEAREA)
 USING SAVEAREA,13 MORE ‘USING’ SPACE
 ST 2,SAVEAREA+4 CHAIN OLD TO NEW
 ST 13,8(2) CHAIN NEW TO OLD
*
* OPEN FILES AND CHECK RESULTS
*
A1 OPEN (PRINTD,(OUTPUT))
 TM PRINTD+48,X’10’ CHECK SYSPRINT OPEN STATUS
 BZ ERROR1
*
* GET RANDOM NUMBERS AND PRINT THEM
*
 LA 7,20 GET 20 RANDOM NUMBERS
LOOP1 CALL CSNBRNG,(RETC,REASC,EXDL,EXD,FORM,RANNUM)
 CLC RETC(4),SZEROS
 BNE ERROR2
 LA 1,RANNUM WHERE TO START HEX CONVERSION
 BAL 10,AHEXLINE
 MVC PRINTLNE(80),SBLANKS
 MVC PRINTLNE(21),=C’RANDOM NUMBER (HEX) =’
 MVC PRINTLNE+22(16),SWOUT
 PUT PRINTD,PRINTLNE
 BCT 7,LOOP1
CLOSEALL CLOSE (PRINTD)
RETURN L 13,4(13) GET A(CALLER’S SAVE AREA)
 LM 14,12,12(13) RESTORE CALLER’S REGISTERS
 SR 15,15 SET RETURN CODE
 BR 14 EXIT
*
* SIMPLE ERROR HANDLING.
*
ERROR1 WTO ‘UNABLE TO OPEN SYSPRINT DD STATEMENT’
 B RETURN
*
ERROR2 WTO ‘NON-ZERO RETURN CODE’
 B RETURN
*
PRINTD DCB DSORG=PS,MACRF=(PM),DDNAME=SYSPRINT,LRECL=80, X
 RECFM=FB,BLKSIZE=8000
* VARIOUS WORK AREAS AND CONSTANTS
PRINTLNE DC CL80’ ‘
RETC DC F’0’ RETURN CODE (ICSF)
REASC DC F’0’ REASON CODE (ICSF)
EXDL DC F’0’ EXIT DATA LENGTH (ICSF)
308 IBM zPDT Reference and Guide

EXD DC CL4’ ‘ EXIT DATA (ICSF)
FORM DC CL8’RANDOM ‘ RULE FORM
RANNUM DC 2F’0’ RANDON NUMBER
*
 DROP 12
SAVEAREA DC 18F’0’
SW1 DC D’0’ WORK AREAS FOR UTILITY ROUTINES
SW2 DC D’0’ WORK AREA
SPILL DC D’0’ SPILL FROM SW2 UNPK INSTRUCTION
SWOUT DC CL80’ ‘ OUTPUT AREA
SBLANKS DC CL80’ ‘ SOURCE OF BLANKS
SZEROS DC 2F’0’ SOURCE OF ZEROS
ASCNDECS DC 8F’0’ LOCAL REGISTER SAVE AREA
 SPACE
*--
* FORMAT 32 BYTES OF STORAGE INTO HEX.
* INPUT: R1 CONTAINS ADDRESS OF DATA. OUTPUT: 72 BYTES IN SWOUT
*---
AHEXLINE STM 1,6,ASCNDECS SAVE CALLER’S REGS
 LA 2,8 8 WORDS OUTPUT
 LA 3,SWOUT A(OUTPUT)
 MVC SWOUT(80),SBLANKS
AHEXLINF BAL 5,AHEXLINZ CONVERT 4 BYTES
 LA 3,9(3) OUTPUT POINTER
 LA 1,4(1) INPUT POINTER
 BCT 2,AHEXLINF LOOP
 LM 1,6,ASCNDECS
 BR 10 RETURN TO CALLER
*
AHEXLINZ MVC SW1(4),0(1)
 MVI SW1+4,X’00’
 UNPK SW2(9),SW1(5)
 TR SW2(8),AHEXTR-240
 MVC 0(8,3),SW2
 BR 5
AHEXTR DC C’0123456789ABCDEF’
 SPACE
 LTORG
 END
/*
//L.SYSLIB DD DISP=SHR,DSN=SYS1.MACLIB
// DD DISP=SHR,DSN=CSF.SCSFMOD0
//G.SYSPRINT DD SYSOUT=*

17.4.5 z/VM usage

Cryptographic coprocessors are defined for z/VM guests as shown in the following example:

USER USERJOE 999999 512M 16E BDEG
 ACCOUNT ABC123 ABC123
 CRYPTO DOMAIN 13 14 15 (domains to be used)
 CRYPTO APDED 1 3 (coprocessors to be dedicated for use)
 OPTION TODENABLE MAINTCCW
 MACHINE ESA 64
Chapter 17. Cryptographic usage 309

 CPU 0 BASE
 CPU 1
 IPL 190 PARM AUTOCR

 etc
310 IBM zPDT Reference and Guide

Chapter 18. Virtualization

zPDT may be used in a virtual environment. Two environments were tested for zPDT use:

� VMware products, including VSphere Enterprise.

� KVM in basic Linux distributions

Other virtual environments might operate correctly, but have not been tested by zPDT. In
particular, the VMware Player (operating under Microsoft Windows) has not been
investigated and no support is available for this configuration.1

Many options are available in a virtual environment. In some cases it is reasonable to
substantially overcommit a virtual server; that is, to run virtual guests that (in total) could use
more memory or more processor cycles or more I/O activity than are actually available. This
is typically done when the system administrator knows that the actual workloads are such that
the overcommitment has no undesirable effects.

zPDT (running z/OS) is typically a “heavy” workload. We strongly advise that you do not run zPDT
in substantially overcommitted virtual environments. Among other effects, a substantially
overcommitted virtual server might cause delays that trigger z/OS missing interrupt handler or
SPINLOOP warnings. Another danger might be cascading page faults, where the virtual
machine hypervisor and the guest Linux running zPDT and z/OS might all be paging due to
several levels of overcommitted memory.

As a general rule, you (the zPDT owner, user, and/or administrator) must obtain the
necessary skills to install, configure, and use your virtual server. We do not attempt to
document or provide instructions for installing and managing the virtual server environment.

License servers
The tested virtual environments normally used remote zPDT license and UIM servers. This
may not be necessary for smaller VMware configurations where a separate USB port (for a
token) could be assigned to each virtual guest zPDT.

A single zPDT token (connected to a USB port on the VMware server) cannot be shared by
multiple virtual machines. In general, the first virtual machine started (that specifies USB
usage) occupies the USB interface to the token. Using a remote license server allows a token

18

1 This does not mean that it fails. We simply did not investigate it and cannot offer any support for using it with zPDT.
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 311

to be shared by multiple virtual zPDT instances (assuming the token can provide sufficient
licenses).

Disk configurations
It is possible to configure logical disk drives to be shared among multiple virtual guest
machines. Do not do this unless you are absolutely certain you know what you are doing!
Linux (which we assume is the basic operating system on all the virtual machines) does not
routinely support shared disks. (To better understand the considerations, think about the disk
cache that is so important for Linux performance.)

Performance
We found z/OS guests under VMware or KVM to have performance ranging from excellent to
unacceptable, depending on the nature of the workload and whether the server was
overcommitted in some way. A virtualized environment, whether VMware or KVM, cannot
create more machine capacity than what exists in the underlying hardware.

The key consideration is the nature of the workloads. The focus in this document is z/OS, but
this does not imply any particular workload under z/OS. A z/OS system with many TSO users
(mostly editing source code or doing occasional compilations) might be considered lightly
loaded, whereas another z/OS system with only a few users running large DB2 or java jobs
might be quite heavily loaded. You cannot draw any conclusions about performance unless
you can realistically define your workloads.

Our notable points included these items:

� If the z/OS workloads tended to drive z/OS to 100% CP usage, then overcommitment of
server cores resulted in poor performance. Performance degradation was not linear.
When the processors were overcommitted (with near 100% utilization by z/OS workloads)
performance dropped dramatically.

� z/OS jobs with heavy I/O ran considerably slower than in a non-virtual environment, even
with no overcommitment of cores. Some MIH2 messages were seen, but z/OS recovered
from these.

� Light z/OS loads, such as TSO use with occasional compilations, ran very well across
multiple virtual machines.

� We did not overcommit memory. This is possible with VMware, but we avoided it. Such
overcommitting of memory could result in paging at the VMware level and we assumed
this would degrade overall performance.

� Except for very light workloads, most z/OS jobs (in virtual machines) ran a little slower
than in non-virtual environments. This was expected and accepted. What was unexpected
(although reasonable) was the apparent processor time (TCB + SRB times) for z/OS jobs
was longer than in a non-virtual environment. That is, the apparent System z instructions
ran slower, and thus needed more System z processor time. This might be significant in a
situation where processor time (as reported by SMF) is important for some reason.

� Each virtual machine (for zPDT) had a base Linux. As usual, the Linux disk cache is a
critical performance factor. Using monitoring facilities we noted that the complete virtual
machine memory was heavily used. We suggest that giving more memory to each virtual
machine than you might provide in a non-virtual environment (without overcommitting
memory) may improve performance. In effect, this allows more buffering of I/O to the real
disks on the server.

2 MIH is missing-interrupt handler. This is a z/OS function that can be triggered by very slow (or backlogged) I/O
operations.
312 IBM zPDT Reference and Guide

Chapter 19. Problem handling

There are several aspects to handling zPDT problems, including these:

� Problems starting a zPDT operation
� Problems during a zPDT operation
� Problems with emulated device files
� Problems with the underlying Linux system
� Problems with the System z operating system and applications

This chapter uses the term zPDT service provider. This may be an IBM Business Partner or
some other zPDT provider that offers service. Not all zPDT users may have such service
providers, and some of the information in this chapter may not apply in these cases.

The underlying Linux system, and whatever System z operating system and applications are
being used, are not part of the zPDT and are not part of any zPDT support activity. zPDT
support includes only the direct zPDT components. As a practical matter, there may be some
overlap between Linux issues and zPDT problems, and you may need assistance from your
zPDT service provider to isolate the problem.

19.1 Problems starting zPDT operation

These problems are most commonly related to devmap errors, and are often due to errors in
Linux file names in the devmap. The solution is to check the devmap carefully, remembering
that file names are case sensitive in Linux.

Problems obtaining a license (from the zPDT token) are typically due to an expired or
unactivated token.

Messages about Time Cheat errors indicate a more serious problem. These are typically
caused either by (1) moving a token between multiple PCs that do not have their time-of-day
clocks closely synchronized, or (2) manipulation of the clock in the PC.

The zPDT system uses several Linux shared storage (virtual memory) areas. These are
normally freed when zPDT is ended with an awsstop command. A failure or incorrect handling
during zPDT startup or operation might result in these shared storage areas not being

19
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 313

released. This can prevent zPDT from being started again. There are Linux commands to
individually free shared storage areas, but this requires multiple detailed steps.1 Rebooting
Linux is a primitive but effective way to solve this particular situation.

If you have problems with the token or license consider taking the following actions before
calling for help, first resolving any errors detected by these steps:

� Try the uimcheck command.

� Verify that the local token can be accessed, using the following Linux commands:

$ lsusb | grep Rain (You see “Rainbow Technologies”)
$ ps -ef | grep usbdaemon | grep -v grep (You see safenet_sentinel)
$ ps -ef | grep Sntl | grep -v grep (You see SntlKeysSrvrlnx)
$ netstat -tlp (You see "sntlkeysrvr" in the fourth column)

� Try starting zPDT with a simple devmap, such as this one:

[system]
memory 1048m
processors 1
3270PORT 3270

� If a license problem persists, try deleting /usr/z1090/uim/uimclient.db. You need root
authority to do this. Then restart zPDT.

� Try this command; you might need to save the output if further help is needed:

$ cat /usr/z1090/bin/sntlconfig.xml

If you need to seek help, provide the following information with the initial help request:

� Has your zPDT system worked before the current problem? If so, what has changed?

� What are the software levels involved?

– What is the exact zPDT level? A number such as 45.26.01. Use the following Linux
command to determine the zPDT level:

$ rpm -qa | grep 109 (Use “109” not “1090” or “1091”)

– What is the Linux level? For example, openSUSE 12.1.

– What is the operating system level (and is it an AD-CD system)?

� Are you running a virtual environment?

� How much memory is available on the PC (or your virtual machine)

� What type of token do you have (a 1090 or 1091)? Is it initialized? Are you certain? (Use
Resource Link or your zPDT provider to initialize 1090 tokens. Use IBM Passport
Advantage® or your zPDT provider for 1091 tokens, if initialization is needed.)

� Are you using a remote license server (as opposed to a token in your PC)?

� Are you trying to use a cloned system for the first time?

1 The Linux ipcrm command can be used to remove shared resources that have been orphaned.
314 IBM zPDT Reference and Guide

19.2 Problems during zPDT operation

The zPDT system maintains several logs and traces during operation. The zPDT programs
might detect a problem and capture the logs or traces at the time of the problem. You can also
capture logs and traces with a snapdump command2. This command may be used when there
is no indication from zPDT that a problem exists, but you detect a problem and might want to
work with your zPDT service provider3 to resolve it.

It is important to remember that this discussion is solely about zPDT operation. The
snapdump data is not meaningful for addressing other problems, such as a problem with the
System z operating system or System z applications.

A snapdump command typically creates a megabyte of data in /home/ibmsys1/z1090/logs,
contained in various files. You may use snapdump as often you want, remembering that each
one takes space in the logs directory. Your zPDT service provider might want several, or one,
or none of these dumps.

Files in the logs directory created by snapdump are retained until you remove them. Most other
log and trace files in this directory are automatically deleted by zPDT when appropriate.
However, over time there may be a buildup of unwanted files in the logs directory. Assuming
you are not working on an outstanding zPDT problem, you can simply delete all the files in the
logs directory (doing this when zPDT is not running). An easy way to do this is to use the
--clean option of the awsstart command. Again assuming you are not working with a zPDT
problem, you might use the --clean option every time you perform an awsstart. Conversely,
do not use the --clean option while you are working on a problem; some of the older log and
trace files might be wanted at a later time.

The senderrdata command is used to package snapdump data into a .tar file, which is
typically a little less than a megabyte. This file can be sent to IBM, through your zPDT service
provider, or simply kept on your Linux system for potential use later. The senderrdata
command can manage the FTP operation to IBM. These files (on the receiving system at
IBM) are automatically deleted after a few days unless a formal problem (PMR or equivalent)
event is opened; this can be done by your zPDT service provider.

Figure 19-1 provides an overview of problem data handling. If snapdump data is sent to IBM
(as outlined in the figure), the senderrdata option to create a configuration file should also be
used and the results sent to IBM.4

2 The snapdump command is valid only while zPDT is operational.
3 IBM internal users would communicate through the z1090 forum instead of through a zPDT service provider. Other

users, without a defined service provider, might use another zPDT forum.
4 Later 1090 versions may automatically combine the configuration data with the snapdump data.
Chapter 19. Problem handling 315

Figure 19-1 Problem data capture and reporting

If a problem incident is opened through your IBM Business Partner, you might be requested
to send additional files. In general, after a problem incident is opened, do not delete anything
from the logs directory.

If device managers fail they automatically create a trace file and are automatically restarted.
This restart will not occur more than three times per minute. If a fourth failure occurs within
the same minute the device manager is not restarted and the devices it controls become not
operational for the remainder of that zPDT session. The zPDT design limits the size of the
logs and traces and should never create more than about 30 MB per emulated device (and
there is normally much less than this).

Option 3 FTP/dump snapdata
snapdump ID
PMR number (if known)
branch office, country code

(leave blank)
warning about lsvpd

*File to transfer/dump: 999999.99...tar.gz
1 to FTP

Enter1

yes to saveAttempts to FTP to IBM
hangs if cannot connect.
Cntl-C to escape.

Clean option erases all
existing logs and tracesawsstart xxxxx �clean

/home/ibmsys1/z1090/logs

User detects problem
during 1090 operation

$ snapdump
Logs/traces

1090 detects problem and
performs internal equivalent
of a snapdump

A severe problem may also
create Linux core files in
your home directory. These
are not managed by the
senderrdata command or by
any other 1090 function.

$ rassummary -s

Any snapdumps?
Note the ID.

Working on a
1090 problem?

Consider the --clean

option the next time
you use awsstart

No Yes

Date and time in a snapdump
matches your problem?

Want to open a problem with
the zPDT provider or add data
for existing open problem?

$ senderrdata

Saves file in /tmp

Must work through your

zPDT service provider to

open a problem with IBM

Option 5: configuration file
PMR number (if known)

warning about lsvpd

*File to transfer/dump: 999...tar.gz
1 to FTP

Enter1

yes to save

Saves file in home directory

END

Attempts to FTP to IBM
hangs if cannot connect.
Cntl-C to escape.

Look through
snapdump titles
316 IBM zPDT Reference and Guide

19.3 Core images

Severe problems might cause core image files to be created. If these are created by zPDT,
they should go into the log subdirectory and be cleaned up with --clean option of awsstart. If
you are actively working on a problem with your zPDT provider, these files may be useful.
Otherwise they may be deleted because they can be rather large and might create a disk
space problem.

Consistent dumps (“core images”) when zPDT is started can occur if you have a relatively
large number of emulated I/O devices (more than 100, for example) and you have not
considered memory management adjustments.

The snapdump command is used when zPDT is running. If you are unable to start zPDT (with
the awsstart command) or zPDT ends immediately (before a snapdump can be taken), the
problem may have created a core image file. In this case, the core image might help with
problem analysis and should be preserved while the problem is under investigation.

19.4 Logs

There are many logs that can be references. Some are Linux logs (in /var/log) and some are
zPDT logs (in /home/ibmsys1/z1090/logs, assuming userid ibmsys1 is used for zPDT
operation). The two most useful logs for initially looking at a problem are these:

/var/log/message (for Linux messages)
/home/ibmsys1/z1090/logs/log_console_......txt (for zPDT messages)

The log_console names tend to be long because they include a PID and time/date, as in this
example:

log_console_p6780_t2014-11-21_13-31-07.txt

19.5 Emulated volume problems

An emulated 3390 volume is a single Linux file that was created with the alcckd command.
Three variations of this command are useful for problem handling:

$ alcckd /z/WORK03 -rs (scan emulated volume for format errors)
$ alcckd /z/WORK03 -rf (replace bad track with zeros)
$ alcckd /z/WORK03 -r (display volser and size)

The -rs function scans the emulated volume and verifies that it is in the correct 1090
emulation format.5 The -rf function replaces improperly formatted tracks with a properly
formatted track containing zeros. The original contents of the track are lost, but the
functionality of the volume is maintained.

Assuming that your emulated 3390 volumes are in the /z directory and there are no other file
types in this directory, you could verify the format of all the volumes with the following Linux
shell commands:

$ cd /z (location of emulated ckd, and nothing else)
$ for i in *; do alcckd $i -rs; done

5 Only the emulation format is checked. There is no check for data content or operating system metadata (label,
VTOC, and such).
Chapter 19. Problem handling 317

The ckdPrint command can be used to examine the contents of an emulated CKD volume.
This command prompts for the beginning cylinder and head numbers and the ending cylinder
and head numbers. These numbers are in decimal. The following example lists the records
on cylinder 0, head 0 of volume Z9SYS1:

$ ckdPrint /z/Z9SYS1
DeviceType 3390, Cylinders-3339, Trks/Cyl-15, TrkSize-56832
Input extent in decimal - CC-low HH-low CC-high HH-high
00 00 00 00
....
....

The tapeCheck command may be used to verify the format of an awstape file. That is, this
command reads the awstape file and verifies that the awstape control blocks are logically
correct.

Special problem-related commands
The senderrdata command provides a menu of options:

1. rassummary (uses the Linux less command)
2. rassummary -s (for an overview of snapdump incidents)
3. FTP/dump snapdump data
4. FTP/dump PE directed files (used only at IBM request)
5. Create configuration information file
6. Logs Directory maintenance
7. FTP/dump rassummary created files
8. FTP/dump all files in logs directory
9. snapdump

The dump options in this menu mean that a .tar file is created, containing the selected files,
and the .tar file is saved in /tmp. The dump option (to create a .tar file) is especially useful if
the zPDT machine is not connected to the Internet.

The senderrdata command also creates a configuration file when you choose option 5. This
file contains the following information such as the version of zPDT, the version of linux, the
tokens plugged, memory usage, network configuration, file system information, contents of
the z1090 directories, active Linux processes, copy of the last devmap used, and when the
root password is provided) a copy of the Linux /var/log/messages. This file is useful when
debugging events where a linux issue may be impacting the zPDT application.

A number of 1090 commands are intended to be used only at the direction of IBM support
personnel and they supply the specific commands and operands to be used. This category
includes the following commands:

$ awslog (including --logsize and --logcount operands)
$ doOSAcmd (various subcommands)
$ dreg (shared resource registry)
$ dshrmem (shared memory)
$ printlog (only for some .gz logs)
$ printtrace (only for some .gz traces)

The contents and formats of the various log and trace files are not documented and are
intended only for diagnostic use. Our experience is that these files are not useful for solving
general user-level problems.
318 IBM zPDT Reference and Guide

19.6 Linux monitoring

Some monitoring of Linux statistics may be helpful. The vmstat command is useful and
causes very little interference with other processes in Linux.

$ vmstat 3 4 (4 samples at intervals of 3 seconds)
procs -----------memory------------ ---swap--- -----io----- --system-- ----cpu----
 r b swpd free buff cache si so bi bo in cs us sy id wa
 2 0 0 397600 101936 2398160 0 0 109 52 154 350 14 2 81 3

r = number of Linux processes waiting for run time
b = number of Linux processes sleeping
swpd = amount of swap space used (KB)
free = amount of idle memory (KB)
buff = amount of memory used as buffers (KB)
cache = amount of memory used as cache (KB)
si, so = Linux paging activity in KB/second
bi, bo = I/O activity in blocks/second
in = interrupts per second
cs = context switches per second
us = percent of CPU time in user mode
sy = percent of CPU time in kernel mode
id = percent of CPU time idle
wa = percent of CPU time waiting for I/O

Important data from vmstat includes the Linux swap rates (si, so); any number here can
degrade zPDT performance. If zPDT suffers a page fault, then the whole System z CP
operation must wait for the page fault to be resolved. The wa statistic (CPU percentage
waiting for I/0) provides an indirect indication of I/O overload.

The top command provides data about individual Linux processes. We are most interested in
the emily process (which is the name of the Linux process representing the CP), but
information about various device manager processes can be useful in spotting bottlenecks.
Enter q from the keyboard to terminate the top command.

$ top
top - 11:14:14 up 1:24, 3 users, load avg: 1.26, 1.15, 1.02
tasks: 128 total, 1 running, 121 sleeping, 6 stopped, 0 zombies
CPU(s): 49.9% us, 0.2% sy, 0.0% ni, 49.7% id, 0.0% wa 0.0% hi, 0.0% si
mem: 3111660k total, 2719204k used, 392456k free, 105356k buffers
swap: 2104504k total, 0k used, 2104504k free, 2397740k cached

 PID USER PR NI Virt RES SHR S %CPU %MEM TIME COMMAND
7040 ibmsys1 25 0 1549m 1.5g 1.5g S 100 49.6 35:41.2 emily
7051 ibmsys1 16 0 1510m 36m 36m S 0 1.2 0:03.1 awsckd

The XOsview program provided with openSUSE Linux, if installed, can be started from
System → Monitor → XOsview.6 It provides a dynamic display of individual processor
usage, memory usage, paging, and so forth. This program uses X11 graphics and creates
more overhead than vmstat or top. If you are concerned about paging exposures on your
system, we suggest that XOsview be started before starting zPDT.

The XOsview program, by default, uses a split line to display PC processor activity. Half of
the line indicates instantaneous activity and the other half of the line shows an average rate
with a decay factor averaged over several seconds.

6 This was the starting sequence for earlier openSUSE distributions. It might change in later releases.
Chapter 19. Problem handling 319

The decay presentation can be removed as follows:

cd /usr/lib/X11/app-defaults
gedit XOsview

Edit by changing *cpuDecay from True to False.
320 IBM zPDT Reference and Guide

Chapter 20. Server Time Protocol (STP)

Server Time Protocol (STP) provides synchronized time-of-day (TOD) clocks among several
connected systems. zPDT GA6 (and later) provides this function for use among multiple
zPDT systems. The zPDT implementation is not designed for connection to larger System z
STP configurations. Figure 20-1 provides an overview of the function.

Figure 20-1 STP Overview

STP implementation is considerably more complex than indicated in the figure, but the figure
is useful as a starting point in describing the function.

20

zPDT

STP functions

TOD

CCTpage

newcct
server(s)

newcct
local clientlogC

logS

Linux system

Stratum 1

zPDT

STP functions

TOD

CCTpage

newcct
local clientlogC

Linux system

Stratum 2

zPDT

STP functions

TOD

CCTpage

newcct
local clientlogC

Stratum 2

Linux system

TCP/IP
TCP/IP
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 321

Two terms are important in this description:

� Coordinated Timing Network (CTN): This indicates a collection of servers that are time
synchronized. On larger z System machines, the coordination can be provided by STP or
(on older systems) by a Sysplex Timer or both. For zPDT, only STP is involved.

� Server Time Protocol (STP): This describes the protocol operating in and between the
servers in the CTN. In a rough sense, STP is an implementation of a CTN.

STP and CTN terminology is sometimes mixed; this is technically incorrect but the meanings
are usually clear. The figure shows three zPDT instances (each in a separate PC) in a CTN.
The figure includes the following high-level elements:

� A CTN has stratum levels. Stratum level n provides timer control to level n+1. Stratum 1 is
the top layer in an CTN environment and must exist. In practice, a zPDT CTN must have a
stratum 1 server and one or more stratum 2 clients. Stratum 3 clients (fed by stratum 2
clients) are possible but are not described here and have not been tested.

� The stratum 1 server might ultimately obtain its time-of-day from a variety of sources,
including the machine BIOS clock, Network Time Protocol (NTP) connections, or an
external high-precision clock. These sources can feed or initialize the Linux clocks and
STP then works from the Linux clocks.

� The STP server (in the stratum 1 machine) connects to clients. These are local clients (in
the same Linux as the server) or remote clients (in other machines, connected by TCP/IP).

� STP servers and clients provide log functions. Our implementation (described later)
places these in /tmp by default, but this is configurable.

� The STP executable program is named newcct. The same program is used for the server
and clients.

� An STP client maintains a small file named CCTpage, which is in /tmp by default. This
contains local timer adjustment data, and is updated as needed by the STP client.

� Information from CCTpage is used to adjust the time-of-day (TOD) clock that is used by
zPDT. Multiple elements contribute to the TOD clock used by the STP server, including
these elements:

– The Linux REALTIME clock (maintained by Linux software)
– The Linux MONOTONIC clock (maintained by Linux software)
– The PC BIOS hardware clock, which is referenced when Linux is booted
– The PC time-stamp counter (TSC), if present
– The libCCT library package and the ReadCCT routine

The interaction of these elements is complex and is not described in this document.

� The figure shows a single zPDT instance in each machine. Multiple instances are possible
and each instance requires a separate STP client instance.

� The STP functions run at the Linux level. They are started before staring zPDT. In
practice, the STP functions are typically started when Linux is booted and are left running
while Linux is running.

� The remote clients use TCP/IP connections to the server. In a larger z System
environment, these connections are typically through coupling facility channels, which are
very high-speed connections. The accuracy and usability of the zPDT STP
implementation might be affected by delays in the IP network.

� The zPDT STP implementation cannot be connected to a larger z System CTN.

This chapter describes the practical configuration and operation of STP in a zPDT system.
Much more general STP detail is available in Server Time Protocol Planning Guide,
SG24-7280.
322 IBM zPDT Reference and Guide

20.1 CCT uses

The coordinated time of day provided to multiple z/OS systems can be used for a variety of
purposes, such as later comparisons or reconciliation of log files. However, the most common
use is for sysplex operation. A z/OS sysplex, either a basic sysplex or a parallel sysplex, must
have coordinated time-of-day clocks. For zPDT, parallel sysplex operation is provided only
when all z/OS systems are guests within a single z/VM environment. In this case, a simulated
clock is used and a CCT is not relevant.

20.2 Configuration

To use the STP function, complete these steps:

1. Create and customize the /usr/z1090/bin/CCT_data file, working as root. The pattern is
given in /usr/z1090/bin/CCT_data.MASTER, which contains the following text:

ThisNode = xxx.xxx.xxx.xxx
MasterNode = yyy.yyy.yyy.yyy
CCTid = zPDTbasic
ClientLogEnabled = Y
CCTdir = /tmp

– ThisNode is the address of your Linux system. It may be expressed as an IP address or
as a domain name. For all parameters, a space must exist before and after the equal
sign.

– MasterNode is the address (IP address or domain name) of the Linux system running
the STP server. ThisNode and MasterNode are the same value for the Linux system
running the server and also a client function.

– CCTid is the name of your STP network. This parameter should be the same for all your
systems. The sample name, zPDTbasic, is arbitrary but is a workable name.

– ClientLogEnabled must be set to Y or N to control client logs. If enabled, a line is
added to each client log every minute. These logs might be useful when setting up a
basic sysplex complex, but might not be useful in an established operational system.

– CCTdir indicates where the log files and an internal file (CCTpage) file are to be placed.
A good place is /tmp unless you have specific requirements.

– The log files (if enabled) have names indicating the starting date and time of that file.
Existing log files are overwritten.

– Remember to place a space before and after the equal sign in this file. Remember that
the IP addresses are for the base Linux systems, not for the z/OS systems.

We copied /usr/z1090/bin/CCT_data.MASTER to /usr/z1090/bin/CCT_data and, working as
root, configured the following lines for our first Linux:

ThisNode = 192.168.1.80 (Our second Linux uses 192.168.1.90)
MasterNode = 192.168.1.80
CCTid = zPDTbasic
ClientLogEnabled = Y
CCTdir = /tmp

2. Use the stpserverstart command to start the script; it also automatically adds
commands to the Linux cron function so that the server is started automatically when
Linux is booted or fails. The stpserverstop command can later be used to stop the server
and remove the automatic cron function. We then start our first Linux, because it contains
the STP server. The stpserverquery command may be used to determine the state of
Chapter 20. Server Time Protocol (STP) 323

your CCT/STP network. After it is added to the cron function, the STP server/clients are
automatically started whenever you boot Linux. They do no harm if you are not using them
for zPDT.

3. Update your devmaps to include an [stp] stanza. After this stanza is included, zPDT
cannot be started with this devmap unless the CCT function is operational. You might
want to keep a separate copy of your devmaps without the [stp] stanzas, for use in a
stand-alone mode.

[stp]
ctn 00000000F1F0F9F0 #16 hex digits beginning with 00
node 1 W520 * #asterisks marks this node
node 2 W510

There is one node statement for each Linux PC in your complex. The number (1 or 2)
indicates the stratum level of the machine. You should have one stratum 1 server and one
or more stratum 2 clients. The names of the nodes (W520 and W510 in the example) are
arbitrary, but z/OS messages might be more meaningful if these are the names of the
Linux systems, as expressed in /etc/HOSTNAME.

The asterisk (*) denotes the current system which is processing this devmap. In the
example, our second system would have the asterisk after the W510 name. Except for the
location of the asterisk, all the zPDTs in your complex have the same [stp] stanza in their
devmap.

4. The z/OS CLOCKxx members you use (in PARMLIB) must be altered to use the STP
function.

(Member CLOCKB1 in USER.PARMLIB in our test system)
OPERATOR NOPROMPT
TIMEZONE W.05.00.00
ETRMODE NO
ETRZONE NO
ETRDELTA 10
STPMODE YES
STPZONE NO

STP operation in z/OS can be verified with the MVS command D ETR:

D ETR
.....
SYNCHRONIZATION MODE = STP
.....

You cannot use a devmap (as the operand of an awsstart command) that has an [stp]
stanza unless the CCT/STP function is running. You can check the status by using the
stpserverquery command.

If you display Linux processes directly, with a ps aux | grep cct command for example, you
see a line that ends with newcct information, as in the following example:

newcct 192.168.1.80 -L -e1000 -E300000 -f -I zPDTbasic -n0 -r120
newcct -v1

The CCT/STP function does not affect the Linux time-of-day clock. It affects only clocks that
use the CCT interface library routines; in practice, this means zPDT (when a [stp] stanza is
present in the devmap) and z/OS (when the CLOCKxx parameter is set).
324 IBM zPDT Reference and Guide

20.3 Additional details

The z/Architecture places tight tolerances on STP clock synchronization and uses the high
speed coupling channels as part of the design to achieve the specified tolerances. zPDT,
using IP communication, cannot duplicate this environment and the z/Architecture tolerances
are relaxed for the zPDT STP function. You must evaluate the usefulness and correctness of
the zPDT STP function for your environment.

Both the client and server create log files. Our sample configuration places these in /tmp.
Existing log files are overwritten when a server or client is started. The server log files
typically have little in them. A client log file might have entries such as these:

Wed Oct 8 11:14:54 EDT 2014 (<-- this is when this log file started)
%CCT (TAI seconds) Offset (us) Dispersion Skew (ppm) Steering RTT (us)
 1412781391.767832 -0.088 0.009 0.00 0.00 0.228
 1412781451.774840 -0.102 0.006 0.00 0.00 0.183
 1412781511.782228 -0.103 0.006 0.00 0.00 0.181
 1412781571.789614 -0.097 0.026 -0.00 0.00 0.212

With the default parameters, a client log line is written every minute. As a general statement,
you do not need any information from the logs except, perhaps, an indication of how often the
client might have failed. (The default parameters cause the client to restart itself after a
failure.) The log files are named STPServerLog and STPClientLog and are placed in the Linux
directory you specify in the STP configuration file. These two files are open whenever the
STP function is active. If you want to capture the contents of a log file for later inspection
(remembering that they are overwritten whenever the STP function is started) use the Linux
cp command, as in this example (the cp command may be used against an active Linux file):

$ cp /tmp/STPClientLog /tmp/STPClint.monday3PM

The fields in the client log are as follows:

TAI International Atomic Time (TAI) is the number of seconds since 1 January
1972, including leap seconds. (The leap second data is not normally available
to the zPDT newcct program, and this definition might not be completely
accurate.)

Offset The difference (in microseconds) between the master CCT clock (the stratum 1
server) and the client clock, as calculated by the client.

Dispersion The uncertainty in the calculated offset value.

Skew The difference in the clock stepping rate between the master and the slave.

Steering The rate at which the client clock is being steered in order to reduce the offset
toward zero.

RTT The minimum measured round-trip delay for a set of CCT sample “ping-pong
messages”. More precisely, it is the sum of the minimum forward delay time
and minimum backward delay time for a set of CCT sample ping-pong
messages,

The “ping-pong” messages mentioned are short message exchanges between a client and
server.

The time-of-day provided to z/OS by the CCT/STP function ultimately depends on the
time-of-day returned by the effective Linux clock.1 A user might have a substantially
inaccurate time-of-day in the PC BIOS clock that is used to set the Linux clocks when Linux is
booted. Another user might have an NTP2 connection for Linux, resulting in a Linux clock that

1 This is a slightly complex topic because Linux has several clocks; we ignore this detail here.
Chapter 20. Server Time Protocol (STP) 325

is accurate to within a second or so. At the zPDT level, there is no control over the accuracy
of the time data provided by Linux. The STP function keeps multiple zPDT TOD values
synchronized, but does not control the accuracy of the time presented.

The log files are not intended for normal user inspection and may contain messages with
whimsical phrasing, such as this example:

Incomplete PingPong exchange on client: Resource temporarily unavailable

This indicates a client failure, but the client immediately restarts itself. We have seen these
messages at random intervals on zPDT CCT networks very closely coupled (private 1 GB
Ethernet) but have not seen them on other systems connected through the “real” Internet. In
our test environment, these transient failures appear to have no effect on z/OS basic sysplex
operation. Corresponding log messages on the CCT server include these:

Failed to read doorbell msg
Welcome (this denotes a client restart)

When a remote client connects to the STP server, another server instance is automatically
started. No action is needed to manage this, but you might see multiple STP servers when
using the Linux ps command.

If you have an [stp] stanza in a devmap, you cannot start this devmap (using the awsstart
command) unless you have an STP function active. If you do not have STP active, the zPDT
startup will fail. The most common error message is INVALID REGISTER NUMBER.

The zPDT STP facility relies on a fast, low-jitter TCP/IP connection between host Linux
systems in order to synchronize the zPDT TOD clock values. Insufficient TCP/IP connection
quality results in STP reporting either unsynchronized or unusable TOD clock-source
machine checks to the zPDT-hosted OS. You must provide a physical TCP/IP connection
with sufficient quality to support machine-check-free STP operation. In a virtualized
environment, the hypervisor increases the TCP/IP latency and jitter, as perceived by the STP
facility, increasing the risk of disruptive zPDT STP machine checks. We have performed
limited STP testing in a virtualized environment with mixed results and therefore recommend
that STP not be used in a virtualized environment.

20.3.1 Leap seconds

You may update the leap second information block by including an additional statement in the
devmap, as in the following example:

[stp]
ctn 00000000F1F0F9F0 #16 hex digits beginning with 00
node 1 W520 * #asterisks marks this node
node 2 W510
LEAPSECONDS 25 26 2015 6 30 23 59 59

The format for the LEAPSECONDS statement is as follows:

LEAPSECONDS <active> <new> <year> <month> <day> <hour> <minute> <second>

where:

 <active> is the number of leap seconds currently present. (For the first half of 2017 this
number is 27.)

<new> is the replacement number of leap seconds. (This is not an additional value, but a
complete replacement of the active number. It potentially can be a smaller number than

2 Network Time Protocol (NTP) references an accurate time-of-day service available over the Internet.
326 IBM zPDT Reference and Guide

the <active> value, although this has not happened yet.) The difference between <active>
and <new> should never be more than one.

<year><month><day><hour><minute><second> is the time at which the <new> value is to be
effective.

Two new zPDT commands (issued in a Linux command window) are provided for leap
second details:

$ d lso (display the leap second information block)
$ st lso <active><new><year><month><day><hour><minute><second>
$ st lso 25 26 2015 6 30 23 59 59 (an example)

We understand that the z/OS CLOCKxx parameter STPZONE must be set to YES for z/OS to
process leap seconds when using an STP time source. The leap second information block is
displayed, as in the following example:

LEAP SECOND OFFSET INFORMATION BLOCK
word(0): 80000000
lso active: 25
lso new: 26
update time: 73061E173B3B00 - 2015: 6:30:23:59:59

Comments
In zPDT GA6, the leap-second-information-block is set to 2015-6-30-23-59-59 by default to
insert the leap second scheduled for June, so there is no need for the user to modify it until
another leap second is scheduled.

In zPDT GA7 and later releases the leap second offset has been set to zero instead of 27,
which would be the theoretically correct offset for the first half of 2017. This non-standard
setting has the practical advantage that the base Linux time-of-day should closely match the
z/OS time-of-day as displayed on the operator log.
Chapter 20. Server Time Protocol (STP) 327

328 IBM zPDT Reference and Guide

Appendix A. FAQ

The following frequently asked questions (FAQs) and discussions might be helpful to new
zPDT users.

General

Q: Is this a multi-user system?
A: Yes. Multiple TSO users can connect, in several ways, and use the system in the normal
manner. The same applies to z/VM users, CICS users, and so forth.

Q: How many users can the system support?
A: There is no definitive answer to this. The aws3274 device manager supports 32
connections (which emulate local 3270 devices). There is no specific maximum for TCP/IP
(awsosa) connections to z/OS or for SNA connections1. Practical performance is the primary
limitation, not the theoretical connectivity for terminal connections. A given system might do
well for one very heavy DB2 or java user, or 10-30 typical TSO users, or 100 web users each
having a low transaction rate to a z/OS web server. The answer to the question depends
completely on the nature of the workloads involved.

Q: zIIPs are now “free” but zAAPs are not. Why?
A: The use of zAAPs is deprecated and do not apply to the current z14 level.

Q: The chapter about license servers is a bit confusing. Are hardware tokens being replaced
with “software” licenses?
A: No, definitely not. The “software-only” licenses are intended for special situations where
hardware tokens are not practical, such as with cloud servers. In general, the software-only
license servers are more complex to install and manage, and may have additional fees
associated with them.

Q: Can I install (with gunzip) another z/OS volume while zPDT is running?
A: In principle, yes. In practice it is not a good idea. Disk use during a gunzip of a volume is
intense and can generate MIH messages from z/OS.

A

1 SNA usage is not supported on the 1090 at this time.
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 329

You may also need to resolve serial number issues, as described in Chapter 8., “zPDT
licenses” on page 149.

Q: Does the number of zPDT licenses available (assuming a remote license server) equal the
number of zPDT z System serial numbers assiged?
A: No. See the discussion in “Numbers” on page 168.

Q: I purchased an additional zPDT license in order to configure a zIIP. What has changed in
zPDT GA8?
A: A zIIP no longer needs a separate zPDT license. You can use your extra license to
configure an additional CP.

Q: Are new z System instructions (as provided with recent new z System machines) present?
A: Yes, the emulated instruction set matches the architectural level state for a given release
of zPDT. A few instructions dealing with functions not present in a zPDT environment are not
available.

Q: Will using a zIIP or zAAP increase the performance of my zPDT?
A: No, assuming you are replacing a CP with the zIIP or zAAP. These speciality processors
operate at the same speed as a “normal” zPDT CP. They are provided to allow developers to
verify that their applications use a zIIP/zAAP in the intended manner. Of course, the use of a
zIIP or zAAP might allow more parallel operation in your workload, which could increase the
performance under zPDT.

Q: Do I need to change any z/OS parameters to operate with zPDT?
A: In principle, no. In practice, you may need to adjust a few parameters. These are primarily
related to performance. For example, the CICS transaction timeout value might need to be
increased for very “heavy” transactions. Obviously, adjustments might be needed for widely
different configurations. For example, moving a large DB2 application from a 900 GB LPAR to
a 16 GB zPDT laptop might encounter difficulties

Q: I have zPDT and a hardware key. Where can I download z/OS?
A: z/OS (or any other IBM z System software) is not part of the base zPDT product. You need
to discuss this question with your zPDT provider.

Q: Do I need the hardware token to install zPDT?
A: No, you need it only to run zPDT or install the recent AD-CD z/OS IPL volumes.

Q: Can I use ICKDSF with the ANALYZE function for emulated CKD volumes?
A: No, in most cases. Emulated CKD devices (such as 3390s) do not contain spare cylinders
and diagnostic cylinders that may be required for ANALYZE operation.

Q: How accurate are the z System TOD and timer functions?
A: To a large extent, these are approximately as accurate as the timer in the underlying PC.
Some interval measurements may have a granularity of about 500 microseconds (plus the z
System operating system time needed to manage time-related activities). We suggest you do
not depend on very fine timing measurements on zPDT to reflect what timing might be on a
larger z System

Q: I need to have multiple levels (often more then 3) of z/OS available for testing, although
each z/OS is usually idle at any given time. A 1090-L03 seems to be overkill for my modest
processing needs and, in any case, is limited to three instances. How can I address this
problem?
A: The easiest solution is to use z/VM with multiple z/OS guests. This requires some z/VM
skills, but these are relatively modest. It probably requires more z System memory than other
potential solutions, to avoid excessive z/VM and z/OS paging. See the note in 3.2, “System
330 IBM zPDT Reference and Guide

stanza” on page 36 about older z/OS releases. Memory is important for reasonable
performance in such situations.

Q: Why do you not provide a definite MIPS value? This would help us determine how to best
use zPDT.
A: There are no definite numbers. A MIPS measurement is very dependent on the exact
workload and your system configuration.

Q: Why do some AD-CD releases pause for many seconds while shutting down?
A: You can edit the SHUTDOWN entries in PARMLIB to remove or change any pause
statements. Some functions, such as zFS, have built-in delays that we cannot change.

Q: You are inconsistent with the addresses for the AD-CD volumes. For example, sometimes
volume SARES1 is at address A91 and sometimes at address AA0. Which is correct?
A: Both are correct. Any 3390 volume can be at any address that is defined as a 3390 in the
IODF for that z/OS system. For ease of documentation we always show the primary IPL
volume at A80 and the SYS1 volume (which contains the IODF and IPLPARM data sets) at
A82, but these addresses are not required. The IPL address and parameter must match the
addresses you use. We tend to show SARES1, if mounted, at various addresses.

Q: What happens if I remove the hardware key?
A: The zPDT functions will stop after a while.

Q: You use userid ibmsys1 throughout all the examples. Is there something special about this
userid?
A: No. However, you should always use the same Linux userid when running zPDT, and the
userid should not be longer than eight characters.

Q: Can I use an alternate translation table to convert EBCDIC to ASCII for awsprt output?
A: No.

Q: My z1090 rpm installation failed with an error message about db_recovery. What now?
A: Try the command rpm --rebuilddb and then install z1090 again (using the z1090 installer
program, and not trying to directly install the z1090 rpm).

Q: I am using an emulated printer and this sends output to a Linux file. Does this file remain
open for output by zPDT all the while zPDT is running?
A: Yes. It is closed if you use awsmount to assign a new output file for the printer.

Q: Are zPDT commands case-sensitive? Can I issue ipl or IPL?
A: The command names are case-sensitive. They are simply the names of Linux files and
Linux file names are case-sensitive.

Q: The z1090instcheck command does not work. Why?
A: You might need the full path name for the z1090instcheck command if your Linux PATH
environmental variable does not include /usr/z1090/bin.

A: The AD-CD system always starts TCP/IP and associated jobs. How can I delete them?
Q: You can edit the VTAMAPPL types of entries in PARMLIB and remove the associated
start commands. While running z/OS you can issue P TCPIP. You might then need to cancel
address spaces related to TCPIP, such as INETD.

Q: Can I use RMF?
A: Yes, but not all of it is relevant on a zPDT system.

Q: How do I IPL the SARES1 volume?
A: Assume it is mounted at A9C. The command is ipl A9C parm 0A9CSA. Use S SHUTSA to
Appendix A. FAQ 331

shut down the SARES1 system. (It can be mounted at any address defined as a 3390 in the
AD-CD IODF.)

Q: Why is the first part of the z/OS IPL sequence a little slow under z/VM? After this portion is
complete, z/OS seems to run at a more normal speed under z/VM.
A: This is due to memory initialization and management functions being initialized through
multiple virtualization paths (VM, SIE, Linux). The time seems related to the defined z/OS
guest memory size and disk cache performance. The effect is less apparent when larger PC
memory is available.

Q: I want to place DB2 buffers in the coupling facilities in my Parallel Sysplex. Also, I want to
put the JES2 checkpoint data and RACF data there. How do I do this?
A: This is beyond the scope of this document; you need to study the appropriate manuals
and/or seek help from a systems programmer with experience in this area.

Q: I usually just crash my zPDT system (possibly with the awsstop command). Can I continue
to do this with the Parallel Sysplex running?
A: You can do it, but starting the Parallel Sysplex again may be painful. We strongly suggest
you follow the shutdown procedures for a parallel sysplex. In particular, use the V
XCF,xxx,OFFLINE command to stop additional z/OS members of the sysplex.

Q: Why is the z/OS TOD clock (or the z/VM TOD clock) always about 25 seconds different
than the base Linux clock?
A: The z System operating systems apply leap seconds to the clock; Linux does not do this.
The current leap seconds offset, at the time of writing, is 25 seconds. This System z function
is included with the zPDT GA6 and later releases. However, zPDT GA7 has set the leap
second offset to zero so that the displayed z/OS time, for example, matches the base Linux
time.

zPDT Configuration, devmaps

Q: Can I run z/VM, two z/OS guest machines, and a CP guest machine with only one PC
processor (“core”) and one zPDT CP?
A: Yes. z/VM shares the processor with all the guest systems. However, this configuration
may produce timeouts within z/OS. We consider it below the minimum level for practical use.

Q: Is a Parallel Sysplex system practical on a laptop?
A: Yes, but be certain you have sufficent PC memory. We suggest 16 GB as a minimum in
this case.

Q: Are the “free zIIPs” available to both ISV zPDT and zD&T customers?
A: Yes.

Q: Does IBM need to enable something to allow full operation of the z System internal
CRYPTO instructions?
A: No, full operation is always enabled.

Q: Should device statements (in a devmap) be in order by addresses?
A: No particular order is required.

Q: I have volumes at addresses A80 through A8F. Do I need to define a new awsckd unit in
order to add more disk volumes?
A: No, you can have up to 256 volumes in one instance of awsckd.
332 IBM zPDT Reference and Guide

Q: All your examples have three-digit emulated device addresses. Is this required?
A: No, you may use three- or four-digit addresses. The typical use of only three-digit
addresses with the AD-CD z/OS system is a historical accident.

Q: Can I use multiple zPDT tokens to obtain more CPs?
A: Yes, up to a maximum of 8 CPs in a zPDT instance.

Q: Can zPDT support older CKD drives, such as 3350s?
A: No.

Q: Can I use MVS 3.8?
A: No. The zPDT system does not support architectures prior to XA and 3380/3390s.

Q: Can I configure zPDT to act as, for example, a z800 system?
A: No. Each zPDT release matches a particular z System architeture. zPDT GA8 matches
z14 systems, for example. There is no zPDT facility to alter the architecture level.

Q: Is Flashcube supported for emulated disks?
A: No.

Q: Can emulated printer output be directed to /dev/lp0 or something similar?
A: We do not know; this was not tested.

Q: What are the maximum numbers of CPs, zPDT instances, and I/O devices?
A: A maximum of 8 CPs (or combinations of CPs, zIIPs, zAAPs, and IFLs) may be used in a
zPDT instance, although your license terms might have a lower limit. A maximum of 15 zPDT
instances may exist in a Linux system. A maximum of 2048 I/O devices may be defined in an
instance. Do not take these program maximum values as being practical environments.
There are other factors (such as available memory, SMP effects, and I/O capability) that limit
practical use.

Q: Can I move a zPDT token between two PCs?
A: Technically, yes,2 but there is an important issue involved. The latest time-of-day value
seen by the underlying PC hardware is stored in the token. If the token then encounters an
earlier time, it will fail the operation with a time cheat message. If your two PCs have a
significant time spread between their hardware time-of-day clocks, you may have problems.

Base Linux
Q: Why do you support only limited Linux releases?
A: IBM performs very extensive testing for zPDT. We use Linux releases that are current at
the time this testing starts. There are many practical reasons for not changing the Linux level
midway in the testing cycles.

Q: I have several Linux windows open while running zPDT. I can enter zPDT commands in
any window, which is convenient. However, I also sometimes get output messages in a
different window from where I entered a command. Is this normal?
A: Yes. zPDT output messages (but not command output messages) are sent to the console
session that issued the awsstart command.

Q: Can I make the kernel.shmmax value very large to avoid worrying about it?
A: As far as zPDT is concerned, you could do this. However, it is possible that other Linux
applications might accept the very large value and attempt to use unreasonable amounts of
shared virtual memory, resulting in excessive paging.

2 You should, of course, observe the terms and conditions of your zPDT license agreement.
Appendix A. FAQ 333

Q: Why is zPDT placed in /usr? This directory should be only for basic Linux components.
A: You are correct. A future zPDT release possibly will be placed in /opt/IBM.

Q: Can I run as root when installing and using zPDT?
A: Yes, for part of the installation process. No, for operation. Follow the instructions
concerning when to work as root and when to work under a normal userid (such as ibmsys1).

Q: Does zPDT operate in kernel mode? In suid mode?
A: Kernel mode is not used, but one module (part of awsosa) operates in suid mode.
However, these details might change with future zPDT releases.

Q: Can I use a dual boot method to place Windows and Linux on the same machine?
A: Yes, provided you have sufficient disk space. The primary challenge might be to prevent
Linux or Windows updates from overwriting the dual boot functions.

Q: Can I routinely migrate to the next Linux releases when they become available?
A: Maybe. There is no unique zPDT tie to a particular release, although the Linux release
should be the same or later than the zPDT “build” level. However, it is possible that the zPDT
installation steps might not work for a new release (due to different library paths) or that the
new release might not support the particular hardware in your base machine. Consult your
zPDT provider.

Q: Is there any Linux maintenance that should be routinely done?
A: You should check your /tmp file system from time to time and ensure that free space is
available for it. You might check your Linux home directory for zPDT (this is /home/ibmsys1 in
our examples) and delete any core files. These can be quite large and are usually unwanted
unless you are actively debugging a problem. Note that core files in the zPDT subdirectories
should be investigated.

We have no specific recommendations about online updates to your Linux base system. In
earlier years, we avoided these because of various problems that were introduced through
the updates. More recently, some members of the zPDT development team have been
routinely doing online updates of their Linux (when zPDT is not running) without experiencing
problems related to the updates.

zPDT operation

Tapes, SCSI drives, awstape
Q: I have a SCSI tape drive. I want to use it directly for Linux functions (not connected with
zPDT operation) but I cannot find the mt command (a “standard” Linux command for
manipulating tape devices).
A: We noticed that mt is not always installed with some Linux distributions. In some cases it
appears to be part of the cpio rpm.

Q: Can I use a SCSI DLT tape drive?
A: It should work (if it supports the SSC-3 SCSI Command Set for Sequential Devices),
although this is not supported by IBM and has not been tested.

Q: Can I use a SCSI 4 mm tape drive?
A. It might work but we suggest you do not use 4 mm drives. These have proven to be poorly
suited for emulated IBM S/390 work.
334 IBM zPDT Reference and Guide

Q: Can awstape files from P/390 or R/390 systems be used with the zPDT offering?
A: In general, yes. There is a restriction that the P/390 or R/390 awstape file cannot be read
beyond the last valid logical data record. The older awstape files do not contain the proper
indicators after the last logical data record. (However, awstape files created by zPDT work
correctly in this situation.) This situation is typically encountered when using “tape map”
programs that attempt to read everything on a tape, without obeying the normal EOV/EOF
records or double tape marks normally used to indicate the logical end of data on a tape.

Q: How can I write a tape mark on an awstape volume?
A: Use awsmount xxx --wtm where xxx is the address (device number) of the tape drive.
Notice there is a double dash before the wtm option.

PC hardware, cores, channels, memory

Q: Most of the documentation is about large laptops or servers. I have a typical desktop PC.
Can I use zPDT with it?
A: Probably, assuming Linux works properly with the display, DVD drive, power, and LAN
interfaces on your desktop. You should have at least 8 GB of memory (more is better).
However, the only formal support is for the machines described in this document. IBM simply
cannot undertake the extensive testing that would be needed to qualify the vast variety of
PCs that exist.

Q: Does zPDT reserve PC processor cores for z System execution? Does it partition PC
memory in some way to create z System memory?
A: The answer is no to both questions. A running zPDT system consists of many processes
and threads under Linux; these are dispatched in the normal Linux manner and reference
Linux virtual memory as a normal application.

Q: Are two or more processor cores needed? Can I use a PC with a single core?
A: Two processor cores are not required for an L01 system. Working with a single core
simply results in a slower system because the single processor must handle all z System CP
operations plus all the other processes for I/O and other Linux details. (The one-core machine
is an exception to the rule that there must be at least one more core than the number of CPs.)

Q: I am short on USB ports. Can I use a USB extender for the token connection?
A: Do not use an unpowered USB port extender; it might render your zPDT token unusable. A
powered USB port extender should work correctly.

Q: Can I use a USB disk drive for emulated z System data?
A: Yes, assuming the base Linux recognizes and supports the drive in the normal manner. It
might offer slightly less performance than the internal PC disk drives, but this may be
acceptable in many cases.

Q: Can I use a USB-attached CD/DVD drive?
A: Yes, assuming Linux recognizes it correctly. In some cases we noticed that these were
much slower than the internal CD/DVD drive.

Q: Should I use AHCI or compatibility mode for the laptop disk?
A: Linux seems to install correctly either way. However, we have reports that setting AHCI (in
BIOS) instead of Compatibility mode greatly improves performance of Ultrabay disks, but we
do not have more exact information about specific configurations. zPDT does not care about
these settings; it simply uses Linux I/O functions.
Appendix A. FAQ 335

Q: Does more PC memory improve performance?
A: Yes, up to a point. Linux can effectively use memory as a disk cache and this enhances
performance.

Q: Is there an adapter for parallel channels?
A: There are currently no hardware channel adapters for zPDT systems.

Q: I already have ESCON adapters from previous products for my Intel base PC. Can I use
these?
A: No.

Q: Can a solid-state disk drive be used (in the PC) instead of a traditional hard disk?
A: Yes, they are very effective.

Q: You frequently mention that paging should be avoided. Can I install more PC disks to
reduce bottlenecks in this area?
A: We do not know. We doubt that another disk in a laptop or USB port would have much
effect. Additional SCSI drives on a larger server, especially with multiple SCSI adapters,
might help. We would be interested in any documented experiences in this area.

3270 sessions, emulators

Q: How many “local” 3270 sessions can I use with zPDT?
A: At the time of writing, the limit is 32 sessions with the aws3274 device manager. There is
no particular limit on the number of sessions through OSA and z/OS TCPIP.

Q: Can I use 3270 sessions on other PCs? Your example has all the sessions on the zPDT
machine.
A: Yes, of course. Simply point your 3270 emulator (on your external PC) to the Linux IP
address and port 3270 (if you are using port 3270 for aws3274, of course). We suggest using
a relatively modern 3270 emulator, such as recent versions of PCOMM or x3270. Older,
“free” 3270 emulators have created problems during some of the zPDT test cycles.

Q: Do the int3270port and intASCIIport interfaces provide the same functions as the
equivalent functions on an HMC attached to a larger z System?
A: This is the intended operation, although the operational characteristics might differ.

Q: Can I use my “brand X” TN3270e client?
A: Maybe, but do not base any error reports to IBM on it. Not all TN3270e clients are the
same and there can be significant differences in the handling of error and recovery situations.

Q: Does zPDT handle 3270 nulls correctly?
A: This is not a function of zPDT; it is a function of the 3270 emulator and, to some extent, the
application involved. Relevant functions for x3270 can be found in Options → Toggles → Blank
Fill. The ISPF command nulls on|std|all|off might be relevant.

Q: I am using the IBM Personal Communications product to connect from a remote PC to
z/OS running on zPDT. Every time I start Personal Communications it wants to print
something. How can I stop this?
A: This is a well-known issue, and is not related to zPDT. Personal Communications stores
user profiles in .ws files (such as bill.ws, for example). Find the .ws profile you are using
and add the following lines at a reasonable place in the profile:

[LT]
336 IBM zPDT Reference and Guide

IgnoreWCCStartPrint=Y

Q: I want to use PCOMM instead of x3270. Is this acceptable? Can you include it with the
zPDT package?
A: You should use a release later than PCOMM 5.5. We have verified that version 5.5 is not
suitable for zPDT. PCOMM is part of a separate IBM product. We cannot include it as part of
the zPDT package.

OSA and LANs

Q: The --interface parameter for awsosa is confusing. How should I use it?
A: Read the material in Chapter 7, “LANs” on page 119. The --interface parameter was
introduced because recent Linux distributions have changed the way LAN interfaces are
named and a more general method of specifying a LAN interface to awsosa was needed.

Q: Will my devmap from a previous zPDT release work with a new z/PDT releases?
A: Probably. An important issue is with path names for OSA interfaces. Previous zPDT
releases considered only LAN interfaces that were not down when assigning path names.
The current release considers all detected LAN interfaces and this may result in a different
path name for OSA.

Q: Can I have multiple tap (tunnel) interfaces, such as tap0, tap1, and so forth?
A: Yes. A total of eight OSA devices of any type may be defined. The tunnel interfaces will
typically have CHIPD numbers A0, A1, A2, and so forth. The tap devices may be defined (as
seen by the find_io command), but they are not used unless a corresponding OSA device
exists in the devmap. You can alter the CHPID numbers by using the --interface parameter on
the awsosa device manager statement.

Q: Can I run multiple TCP/IP stacks on a single zPDT emulated OSA-Express adapter?
A: Yes.

Q: Why might I need to specify a unit address in the device statements for OSA? I do not
understand these.
A: A full discussion is beyond the scope of this document. For QDIO operations, you should
not need the unit address operands. We recommend you use the QDIO (also known as OSD)
interface, in which case the unit addresses are not needed. For non-QDIO TCP/IP, you need
to ensure that the unit addresses are 0 and 1. (This is required by the default OAT used by
OSA.) You need to ensure that unit address FE is used only for OSA/SF when using the
default OAT. You need to remember that the default unit address is the same as the
low-order two digits of the device number (“address”). If you meet these requirements, there
is no need to specify a unit address in the device statements for OSA.

Q: Does zPDT support thin interrupts?
A: Yes, for OSA device emulation, but not for CF communication. (This function is properly
known as the Adapter Interrupt Facility.)

Q: Can I filter IP traffic before it is sent to my emulated OSA-Express interface? This reduces
the overhead involved in rejecting packets not addressed to my system.
A: In OSD (QDIO) mode, there is some automatic filtering. In OSE (non-QDIO) mode, you
can customize the OAT with your IP address. If this is done, the OSA interface will pass only
packets intended for this IP address. If this customization is not done (and it is not done in the
default OAT), then all packets are sent to the host TCP/IP and unwanted packets are rejected
Appendix A. FAQ 337

at that level. If you use NAT functions on the base Linux, then most of the filtering is done at
that level.

Q: Is OSA-Express emulation different than OSA emulation?????????
A: Yes, very much so, although OSA operation of simple TCP/IP can usually be provided by
OSA-Express without changes to the z System operation. (This question is related to a
terminology problem and assumes that OSA means the original OSA adapter, which
operated largely as an LCS device.)

Q: Is OSN operation (CDLC) provided with current zPDT OSA emulation?
A: No.

Q: Does current zPDT OSA emulation support jumbo frames? With QDIO? With non-QDIO?
A: At this time, jumbo frames are not supported by zPDT with QDIO, although some users
have been successful using them. Appropriate kernel parameters are needed as specified in
“Notes for sysctl values” on page 104.

Q: Should I use 1492 or 1500 as the maximum packet size (MTU) when using awsosa?
A: We use a maximum of 1492. The details are beyond the scope of this document. (As best
we can tell, the z System communication routines automatically adjust this number down if
necessary. Thus it probably does not matter whether you specify 1492 or 1500.)

Q: Does current zPDT QSA emulation include advanced functions such as VIPA?
A: Yes, when using QDIO.

Q: Can I use a continuing range of addresses (device numbers) when I have multiple OSA
QDIO interfaces? For example, 400-402 for TCPIP1, 403-405 for TCPIP2, and so forth.
A: No. For z/OS we believe the first OSA address for a TCP/IP stack must be an even
number. You would need to use 400-402, skip 403, then use 404-406, skip 407, and so forth.
(This statement might not be correct for z/VM.)

Q: Do the current zPDT OSA offload functions work? Do they accomplish anything on an
emulated system?
A: The Linux-based zPDT OSA implementation does not use offload functions at this time. In
some cases (with current Linux kernels) you might need to force Linux to disable offloading.

Q: What PC Card (PCMCIA-type card) should I use for additional Ethernet ports on a
ThinkPad?
A. Use any card that the base Linux system accepts. We tested with an Xterasys Gigabit PC
Card (98-012084-585). We also informally tried several older IBM 10/100 EtherJet™ cards.

Q: Can I use IP aliasing in Linux while using zPDT?
A: Yes, but the alias addresses are not relevant to zPDT and are not displayed by the
find_io command.

Q: I have multiple Ethernet adapters, each on a different subnet. Response is very slow and I
get multiple responses to pings. Is there a problem using multiple adapters?
A: In principle, no. However, multiple interfaces on different subnets should not be connected
to the same VLAN. This creates routing, ARP, and duplicate response issues. Also, the
external routing configuration (external to your system) might produce multiple responses.
Multiple subnets on a single physical network might produce multiple responses. We suggest
not using multiple LAN adapters unless you have the necessary networking skills available.

Q: I have an error message about GVRP when I try to use a VLAN/VSWITCH in z/VM. Is this
supported?
A: No, GVRP is not supported. Specify NOGVRP for your VSWITCH. VLAN generally works,
but there are exceptions.
338 IBM zPDT Reference and Guide

Q: Is the OSA function for ICC provided?
A: No. However, the AWS3274 device manager provides approximately the same service.

Q: I sometimes want to change Linux TCP/IP between DHCP and a static IP address. Can I
do this while zPDT is running? I am changing only Linux parameters, not OSA parameters.
A: This is not supported, not tested, and probably will not work correctly. We suggest you do
not change Linux LAN definitions while zPDT is running if you are using OSA functions.

Q: Is Token Ring supported for emulated OSA usage?
A: No.

Q: Can I use the emulated OSA QDIO with IPv6?
A: Yes. In principle, you can also use it for aws3274 clients if you find a client (and Linux host)
that supports IPv6. As a practical matter, there has been no zPDT testing of IPv6.

Q: You say that Ethernet SNA operation is not supported. Might it work?
A: Yes, it might. It has not been tested and IBM will not respond to problems using it.
Appendix A. FAQ 339

340 IBM zPDT Reference and Guide

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks

The following IBM Redbooks publications provide additional information about the topic in this
document. Note that some publications referenced in this list might be available in softcopy
only.

� zPDT 2016 Sysplex Extensions, SG24-8315-01

� zPDT 2017 Sysplex Extensions, SG24-8386

� IBM System z Personal Development Tool Messages and Codes, SG24-8103-00

� Installing Linux for z Systems on zPDT: A Short Cookbook, SG24-8330-00

� Communications Server for z/OS V1R9 TCP/IP Implementation Volume1: Base
Functions, Connectivity, and Routing, SG24-7532.

� Introduction to the New Mainframe: z/VM Basics, SG24-7316

� Server Time Protocol Planning Guide, SG24-7280

� IBM Rational Development and Test Environment for System z Installation and Sample
Configuration Guide, SC14-7281

� IBM Rational Development and Test Environment for System z Activation Guide,
SC27-6630

You can search for, view, download or order these documents and other Redbooks,
Redpapers, Web Docs, draft and additional materials, at the following website:

ibm.com/redbooks

Other References

The following documents may help with background information and specific details
concerning zPDT and z/OS operation in this environment.

� Cheryl Watson’s Tuning Letter, multiple editions:

http://www.watsonwalker.com

� Running Mainframe z on Distributed Platforms, by Kenneth Barrett and Stephen Norris of
CA (formerly Computer Associates). The book is available from various places (ISBN-13
978-1-4302-6430-9) or as an electronic deliverable (ISBN-13 978-1-4302-6431-6).

Help from IBM

IBM Support and downloads

ibm.com/support
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved. 341

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.watsonwalker.com
/abstracts/sg248315.html?Open
/abstracts/sg248103.html?Open
/abstracts/sg248330.html?Open

IBM Global Services

ibm.com/services
342 IBM zPDT Reference and Guide

http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Symbols
.bashrc, changes 105
/etc/profile.local file 30
/etc/sudo file 82, 257–258
/etc/sysconfig/network 139
/etc/sysctl.conf 104
/home file system 99
/opt/IBM/LDK/rules.ini 166
/usr/lib/systemd library 107
/usr/z1090/bin 17, 100
/usr/z1090/bin/awsCCT file 88
/usr/z1090/bin/librarybuild 261
/usr/z1090/bin/sntlconfig.xml 155
$SPRT1 command 234

Numerics
1090 messages 262
1090 token 91
1091 token 91
1403 printer 232
3215 terminal 192
3270 display, larger 222
3270 emulator 15
3270 interfaces 122
3270 nulls 336
3270 sessions 336
3270 sessions, starting 114
3270port parameter 123
3270port statement 37
32-bit version of zPDT 31
3350 drives 333
3390 volume, moving 225
3390 volumes, additional 116
3390, emulated, ANALYZE 330
4-mm tape drive 334

A
absolute address 69
acc command 189
accelerator function (crypto coprocessor) 6
activation, token 169–170
AD system, device addresses 112
Adaptec ASC-29320ALP U320 276
Adapter Interrupt Facility 337
AD-CD system, installation 111
Adjunct-processor stanza 40
ADRDSSU job 227
ADRDSSU, utility program 276
adstop command 54
AHCI disk mode 335
aksusbd service 159
alcckd command 32, 42, 54
alcckd command, diagnosis 317
© Copyright IBM Corp. 2014, 2015, 2017. All rights reserved.
alcckd, spare volume 257
alcfba command 56
alias addresses 120
alias function, Linux 256
aliasing, IP 338
Allowed Site Address 166
ap_create command 57
ap_destroy command 57
ap_query command 57
ap_von and ap_voff commands 58
ap_vpd command 58
ap_zeroize command 58
Architecture levels 7
ASCII and EBCDIC, awsrdr 48
ASCII, underlying host 6
asn_lx_reuse operand 252
asn_lx_reuse parameter 253
asynchronous data movers 6
ath0 device 140
attn command 59
Authorized User List 166
aws_bashrc command 59, 104
aws_config command 104
aws_findlinuxtape command 59, 273
aws_sysctl command 59
aws_tapeInit command 60, 192
aws_tapeInsp command 60
aws2scsi command 277
aws3215 9
aws3215 device manager 50
aws3270 device manager 19
aws3274 9
aws3274 device manager 20, 43, 123
awsckd 9
awsckd device manager 42
awsckd, number units 332
awsckd, spare devices 257
awsckmap command 60
awscmd 9
awscmd device manager 49, 209
awsctc 9
awsctc device manager 51
awsfba 9
awsfba device manager 43
awsin command 192
awslog command 318
awsmount command 21, 35, 45, 49, 233
awsmount commnand 50
awsmount, new DASD 258
awsmount, SCSI tapes 272
awsmount, with awsoma 51
awsoma 9
awsoma device manager 50
awsosa 9
awsosa device manager 24, 46
 343

awsOSA performance 138
awsprt 9
awsprt device manager 48
awsprt usage 233
AWSPRT, translation table 331
awsrdr 9
awsrdr device manager 47
awsscsi 9
awsscsi device manager 50, 271
awsstart 114
awsstart command 22, 63, 333
awsstart window 256
awsstart, problems 315
awsstat command 24
awsstop command 64, 115, 332
awstape 9
awstape device manager 45
awstape utilities 278
awstape, compaction 46
awstape, format 110
awstape, P390 335

B
Backup servers 162
base Linux 5
base machine 5
BCPii functions 6
BIOS 251
Block counts, 3490 274
block size, SCSI 276
Blocked Site Address 166
BLP processing 211
bonded Ethernet interfaces 15
bonding, LAN 122
BPXTCAFF program 288
browse command 189

C
card2tape 278
card2tape command 65, 278
card2txt command 65
CCT_data file 323
CEX4C level 29
CEX5S adapter 175
CFCC level 30
CFCC Level 18 29
channel connections 266
CHPID number 124
CKD versioning 261
ckdPrint command 65, 318
client and server details 153
client, migration 281
clientconfig command 66, 154, 156, 167, 171, 258–259
clientconfig_authority command 66, 171, 259
clientconfig_cli command 66, 155, 157, 171
clientconfig_cli line command 157
Cloning zPDT 162
CMS, Conversational Monitor System 180
command

acc 189
adstop 54
alcckd 54, 317
alcfba 56
aws2scsi 277
awsckmap 60
awslog 318
awsmount 35
awsstart 22, 63
awsstop 64, 115
browse 189
card2tape 65, 278
card2txt 65
ckdPrint 65, 318
cpu 67
directxa 189
discard 189
diskmap 189
doOSAcmd 318
dreg 318
dshrmem 318
fbaPrint 69
filelist 189
find_io 46, 143
format 189
ind 189
interrupt 71
ipl 72, 114
ipl_dvd 72
link 189
loadparm 74
managelogs 74
memld 75
msgInfo 76
mt 334
oprmsg 76
peek 189
printlog 318
printtrace 318
purge system prt all 189
purge system rdr all 189
q accessed 188
q all 188
q alloc all 188
q alloc map 188
q da all 188
q disk 188
q links 120 188
q n 188
q pf 188
q prt 189
q stor 188
q system 188
query 78
rassummary 79, 315
ready 79
receive 229
rel 189
restart 80
scsi2tape 80, 277
344 IBM zPDT Reference and Guide

senderrdata 82, 315
snapdump 84
st (store) 85
start 86
stop 86
storestatus 87
storestop 87
sys_reset 88
tape2file 89, 278
tape2scsi 89
tape2tape 90
tapeCheck 90, 318
tapeheck 278
tapePrint 91
token 91
top 319
txt2card 92
vmlink 189
vmstat 319
xmit 227
z1090instcheck 95, 331
z1090ver 95

command statement (in devmap) 37
compatibility mode, disk 335
compressing PARMLIB 244
console, emulation operation 12
core image files 99, 317
core images, startup 317
core, terminology 5
Coupling Facility code 29–30
CP, definition 5
CPs, CPUs, threads, tokens 261
CPs, maximum number 8
cpu command 67
cpuopt statement 37, 252
crontab entries 257
CRYPTO instructions 332
crypto instructions 32
cryptographic adapter 40
cryptographic adapter functions 29–30
CTN logs 322
Customized Offerings Driver (COD) 246
CZAM facility 253
CZAM mode 247

D
Dallas site, maintenance 219
DASDVOL, RACF class 285
Date Extension 171
db_recovery, rpm error 331
DB2 buffers 332
def_reserved_size, SCSI 276
desktop PC 335
det command 189
device addresses, for AD 112
device manager

aws3215 50
aws3274 43
awscmd 49
awsfba 43

awsprt 48
awsrdr 47
awsscsi 50

device map 5
device map (devmap) 35
DEVICE name 124
device statements 41
devices, maximum 263
devmap 5, 22
devmap, environmental variable 38
devmap, example 20
devmap, for AD 113
devmap, introduction 20
devmap, z/VM 177
devmapvm devmap 177
DHCP 137
DHCP and local router 137
DHCP client 137
DHCP-assigned addresses 154
directory structure 21
directxa command 186, 189
DIRMAINT 186
Disabled wait delay 219
disabled wait state 19 253
disabled waits, z/OS 246
discard command 189
disk (hard disk) changes 161
disk changes 161
disk planning 99
disk space, planning 18
disk usage layout 99
diskmap command 189
display_gen2_acclog command 69, 160
domain statement 40
doOSAcmd command 318
dreg command 318
dshrmem command 318
dual boot 334
dynamic changes to devmap 257
dynamic changes to the DASD environment 42

E
EAV allocation 55
EBCDIC and ASCII, awsrdr 48
EBCDIC, usage 6
eDMosa module 259
EIO, CHPID type. 41
emulated volumes, file system 21
Emulex Corporation Zephyr-X 275
ENABLE ALL command 179
environmental variable, devmap 38
ESCON adapters, other 336
ESCON connection, zBox 266
Ethernet adapters 19
Ethernet adapters, multiple 338
Ethernet adapters, shared 145
Ethernet ports, PCMCIA 338
Ethernet SNA 147
ethtool usage 138
ETR 6
 Index 345

expand statement 37
expect rpm 100
Extreme configurations 13

F
Factory Reset option 167
fbaPrint command 69
FCB functions 48
Fibre open system FBA 43
FICON 6
FICON connection, zBox 266
filelist command 189
find_io command 30, 46, 70, 124, 140, 143
firewall functions 100
firewall, Linux 137
Firewalls 161
flash storage 6
force userid 189
format command 189
four-digit addresses 333
fstab options 288
Fujitsu M2488E 275

G
Gemalto N.V., product names 4
Gen1 License server 158
Gen1 tokens, definition 4
Gen2 tokens, definition 4
gen2_init program 171
gunzip utility 111
GVRP, for OSA 338
gzip, compression 110

H
hardware key 330–331
HCD, usage 229
hckd2ckd command 71, 287
Health Checker 221
hfba2fba command 71, 287
hibernation, PC 265
hipersockets 6
host Linux 5
hot reader, JES2 47
htape2tape command 287
Hyper-Threading 251
hyperthreading 100

I
IBM 2107 control unit 24
IBM 3592-E05 TS1120 275
IBM LTO-3 3580 275
ibmsys1 userid 112, 331
ibmsys1, userid 11–12, 102
ibmsys2 and ibmsys3, userids 11
IBMUSER password 115
ICKDSF ANALYZE 330
ICKDSF job 116
IEBCOPY problems 219

IFASMFDL job 246
IFL processor 36
include function 38
include statements 30
ind command 189
installation, rpm problem 331
Installer options 103
installer program 103
instances, zPDT 11
instruction set 330
int3270port statement 37
intasciiport statement 37
--interface parameter 337
interface parameter 337
Interfaces, LAN 70
interrupt command 71
INVALID REGISTER NUMBER 326
IODF changes 229
IODF entry, 3592 277
IP address, changing 339
IP traffic, filtering 337
ipl command 12, 37, 72, 114
IPL in ESA390 mode 253
IPL operation 114
IPL sequence, speed 332
ipl statement 37
ipl_dvd command 72, 175
IPLing in ESA/390 mode 24
iptables 129, 134
IPV6 usage 339
iso fonts 102
ISPF, starting 236

J
Java and WAS startup 223
JES2 checkpoint data 332
JES2 print 235
JES2 setup 234
jumbo frame 139
Jumbo frames 122
jumbo frames 338

K
kernal.shmmax parameter 263
kernel mode 334
kernel.msgmni 264
kernel.sem parameters 264
kernel.shmall parameter 263
kernel.shmall value 104
kernel.shmmax 333
kernel.shmmni 264
kernel.shmmni parameter 264

L
LAN adapter 19
LAN interfaces 70
LAN setup 136
laptop usage 332
346 IBM zPDT Reference and Guide

LCS mode 123
LD_LIBRARY_PATH 100
LDK licenses 4
ldk_server_config 171
ldk_server_config command 73
Leap seconds 326
lease date 81
Lexmark printers 232
librarybuild, information 261
License expiration notification 162
License renewal 167
License search order 163
license server 29–30
License server, Gen1 158
License server, Gen2 159
License servers, virtual environment 311
link command 189
link list, addition 244
LINK parameter 124
Linux CKD formatting 55
Linux command window 256
Linux error numbers 269
Linux firewall 137
Linux for System z 175
Linux installation 99
Linux LAN definitions 339
Linux monitoring 319
Linux releases, new 334
Linux userids 11
list-directed IPL 6
listVtoc command 32, 74
load_daemon.sh 167
loadparm command 74
loadserv 167
local 3270 sessions 336
local token 152
local zPDT system 151
log files, STP 323
logical channel subsystems 6
logs, Linux 317
logs, zPDT 317
logs/traces 315
logstreams, deleting 245
LPARs 6
lpr 233
lso (leap second information block) 327
LUname, aws3274 device manager 44
LX and ASN REUSE facility 253

M
MAC address 70
mail command 162
MAINT userid 180–181
Maintenance for AD-CD z/OS 219
man files, installation 103
managelogs command 74
 41
manager stanzas, general 40
maxlength parameter, awstape 45
Measurement Facility, CPU 6

media, software 110
memld command 75
memory statement 36
Memory, PC 18
memory, PC, size 336
message function 38
message numbers, 1090 262
Message Security Assist 9, 32
message security assist enhancements 9
message statements 30
messages, 1090 262
MIDAW operation 24
MIDAWs 6
MIH (Missing Interrupt Handler) 255
MIH problems 10
Minidisks and files 181
MIPS 331
MIPS (million instructions per second) 13
modprobe 276
mount command, Linux 254
mount_dvd command 75
msgInfo command 76
msgmax and msgmnb settings 105
mt command 334
mt package for Linux 278
MTU for jumbo frames 139
MTU size 139, 338
multiple CPs 11
Multiple I/O paths 6
Multiple tokens, updating 170
Multithreading 6
multi-user system 329
MVS 3.8 333
MVS console, lost 236

N
name statements 41
NAS disks 15
NAT functions 154
NAT router 137
net.core.rmem_max parameter 138
Network File System 13
network-attached storage 15
new release 107
newcct 322
nformation Technology Company (ITC) 266
NFS client 254
NFS use 254
NFS use with zPDT 147
NOGVRP parameter 338
non-QDIO 142
non-QDIO mode 123
nt3270port function 38

O
OAT defaults 47
OAT table 141
OAT, default 337
OAT, filtering 337
 Index 347

OAT, multiple instances 199
OpenClient, installing zPDT 107
openSUSE 11.3 29–30
operating systems, multiple 116
oprmsg command 76
oprmsg command, alias 256
oprmsg usage 236
ordering information 97
OSA (Open Systems Adapter) 5
OSA interfaces 337
OSA notes 263
OSA performance 138
OSA QDIO with IP6 339
OSA QDIO, multiple 338
OSA/SF 337
OSA/SF utility function 141
OSA-Express 123
OSA-Express emulation 338
OSA-Express functions 46
OSA-Express interface, filtering 337
OSA-Express, limits 47
OSA-Express2 offload functions 338
OSA-ICC 339
OSE CHPID type 47
OSN operation 338
out of memory, Linux 257
oversize parameter, x3270 222

P
P/390, AWSTAPE 335
packet size, TCP/IP 338
paging, disks 336
paging, with z/VM 189
PAGING63 parameter 177
Parallel Access to Volumes (PAV) 6
parallel channel 336
password, IBMUSER 115
patch file 103
PATH 100
path assignments 70
PATH for emulated devices 41
path parameter 41, 119
pathtype parameter 41
PAV 6
PAV (parallel acces to volumes) 42
PC Card 338
PC printer 232
PCMCIA card, Ethernet 338
PCOMM, 3270 emulator 101
PCOMM, Linux 337
pdsUtil command 32, 77
peek command 188–189
performance 12
performance, z/VM 13
Perl, installation 100
Personal Communications product 336
PING command 142
ping-pong messages 325
port 1023 244
port 3088 263

port 3270 263
port 3990 263, 286
port 7002 166
port 9450, for token 263
port 9451 263
port number, list 263
PORTNAME (in the TRLE) 124
PowerTerm 101
printer output 333
printing 232
printlog command 318
printtrace command 318
processor, terminology 5
processors statement 36
purge system prt all command 189
purge system rdr all command 189
PUT tapes 219

Q
q accessed command 188
q all command 188
q alloc all command 188
q alloc map command 188
q da all command 188
q disk command 188
q links 120 command 188
Q Logic Corporation ISP2432 276
q n command 188
q pf command 188
q prt command 189
q rdr 189
q stor command 188
q system command 188
QDIO interface, multiple 338
QDIO mode 123
QDIO operation, advantages 141
QDIO or non-QDIO operation 121
QDIO setup 123
query command 78
query_license command 78, 160, 171

R
RACF® data 332
RAID5 usage 255
RANDOM option 152, 165
RAS, basic 3
RAS, comments 1
RAS, general statement 3
rassummary command 79, 315
Rational License Server 173
rdrlist 189
rdrlist command 187
rdtserver statement 37
read-only DASD 254
read-only volumes 253
ready command 79
receive command 229
Redbooks website 341

Contact us xiv
348 IBM zPDT Reference and Guide

rel command 189
releases, new 107
remote operation 263
renewal, token license 169
request_license program 159, 172
RESERVE and RELEASE 42
resolver, z/OS 135
Resource Link 107, 170
restart command 80
RHEL 6.0, 6.1 29–30
RMF 331
RMF Monitor III, starting 244
root mode 5
root partition 99
root userid 334
router personal 137
routers 145

S
S071 ABEND 221
SafeNet module restarts 167
safenet-sentinel 158, 166
SALIPL command 178
SAP processors 36
SARES1 ipl 331
Scenario 2 127
Scenario 3 129
Scenario 4 131
Scenario 5 132
SCSI adapters 271
SCSI block size 276
SCSI def_reserved_size 276
SCSI DLT tape drive 334
SCSI tape 334
SCSI tape drives 271
SCSI tape, block counts 274
scsi2tape 279
scsi2tape command 80, 277
SecureUpdate_authority command 82, 171, 258
SecureUpdateUtility 31
SecureUpdateUtility command 81, 171, 258
security exposure 258
security, license server 165
SEL protection 137
selection menu, 3270 207
senderrdata command 82, 315, 318
Sentinel Admin Control Center 157
sentinel_shk_server restart 265
serial number, changes 161–162
serial numbers, 1090 106
server, migration 281
serverconfig command 83, 171
serverconfig_cli command 83, 171
service command, Linux 265
set pf12 retrieve 189
settod command 84, 256
--shared option 42
Shared read-only volumes 254
shell script, printing 233
SHK tokens 4

shk_usb restart 265
shk-server 102
shmmax value 104
SHUTDOWN command, z/VM 179
shutdown, z/OS and 1090 115
SIMD (Vector Facility) 26
SLES-10 SP1 (for System z) 288
SMB use with zPDT 147
SMF recording 245
SMP/E 219
smpppd rpm 38, 100
SNA 123
SNA 3270 123
SNA operation 9, 123, 141, 147
snapdump 315
snapdump command 84
sntlconfig.xml 155
sntl-sud 102
software media 110
software-only license 2
solid-state disk drive 336
spin loop timeouts 221
spinloop problems 252
SPINLOOPs, cause 10
st (store) command 85
stand-alone dump 223
Stand-alone dump output dataset 224
stanza 36, 41
start command 86
START name 124
stop and start commands 30
stop command 86
storestatus command 87
storestop command 87
STP function 88
stpserverquery command 88, 323
stpserverstart command 88, 323
stpserverstop command 88, 323
stratum levels 322
subchannels, maximum 10
Suspend and Hibernation 265
SVC dumps, space 222
swap partition 99
sys_reset command 88
SYS1.LOGREC full 235
sysctl parameter 138
SYSTCPT DD statement 142
 36
system stanza, devmap 36
System Time Protocol (STP) 26
system timer protocol (STP) function 40
System z 196 processor 30
System z Personal Development Tool 5
System z software 109

T
tap (tunnel) interfaces 337
tape2file 278
tape2file command 89, 278
tape2scsi 278
 Index 349

tape2scsi command 89
tape2tape 278
tape2tape command 90
tapeCheck 278
tapeCheck command 90, 318
tapeheck command 278
tapePrint 278
tapePrint command 91
TCP/IP port 3990 283
TCP/IP stacks, multiple 337
TCP/IP, Linux 339
TCP/IP, starting z/OS 331
telnet connection 244
telnet session 140
thin interrupts 337
time cheat 333
time cheat message 256
timer functions, accuracy 330
TKE system 299
TN3270E client, other 336
TN3270E clients 101
TN3270e clients 101
TN3270e connections 123
TOD steering 6
Token activation 106
token command 31–32, 91, 161, 171
token port number 263
Token Ring 339
token serial number 106
token types 150
token updates 169
token, dates 256
token, moving 333
top command 319
TRACERTE command 142
Transport channel commands 6
Transport Mode I/O 6
TRL entry 124
TSO commands, NETSTAT 141
tunnel connection 124
tunnel connection, usage 140
tunnel device 19
tunnel environment, for OSA 146
tunnel environment, setup 46
txt2card command 92

U
UCS functions 48
UDX, cryptographic adapters 6
UIM configuration 157
UIM ContactServer 154
UIM Local Serial Random 155
UIM serial number 152
UIM server 158
uimcheck command 92, 157, 171
uimd service 32
uimreset command 92, 153, 157, 171
uimreset -l command 152
uimreset -r command 167
uimserverstart command 92, 171

ulimit command 105
ulimit -m and -v 264
underlying host 5
Unique Identifier Manager, UIM 150
unit address, OSA 337
unitadd parameter 41
Universal Time 100
Unsupported Function, 3270 45, 115
update_license program 159, 172
USB 3 ports 31
USB disk drive 335
USB extender 335
USB port expander 15
USB-attached CD/DVD 335
userids, Linux 11
users, maximum 329

V
V XCF,xxx,OFFLINE 332
Vector Facility 26
VIPA functions 338
VLAN networks 154
VLAN, usage 338
VLAN/VSWITCH in z/VM 338
VMAC support 142, 203
VMCOM1 volume 177
vmlink command 189
vmstat command 319
VMWare Player 311
VMWare products 311
VNC use 263
vsftp, selection 100
vswitch support 142, 203
VTAM commands 142
VTAMLST ATCCON00 124

W
wait state 19 253
wireless connection 124
wireless LAN 20
wireless usage 140
workloads, concurrent PC 10

X
x3270 command 38
x3270 fonts 102
x3270 installation 101
x3270 oversize parameter 222
x3270 scripting 267
x3270, obtaining 101
x3270, startup 114
x3270, to z/OS TCP/IP 140
x3270if 267
XEDIT editor 184
xmit command 227
XOsview program 319
350 IBM zPDT Reference and Guide

Z
z System serial number 150
z/OS 110
z/OS CP and memory display 220
z/OS operator console, lost 236
z/OS TCP/IP 123
z/OS, download 330
z/OS, older releases 253
z/TPF 190
z/VM 110
z/VM 6.4 176
z/VM cold start 178
z/VM directory 185
z/VM IPL and logon 177
z/VM, performance 13
z/VSE 110, 175
z1090 rpm 102
Z1090_ADCD_install 111
Z1090_ADCD_install command 93, 111
Z1090_removall command 94
Z1090_token_update command 93, 171, 258
z1090instcheck command 32, 95, 106, 259, 331
z1090term command 29, 38, 95
z1090ver command 95
Z1091_ADCD_install command 93, 111
Z1091_token_update command 93, 258
z1091ver command 95
z13 system, zAAP 7
z196 processor 30
zAAP and zIIP, creation 36
zAAP speciality engine, z13 7
zAAP speciality processor, z13 26–27
ZARCH_ONLY=NO 252
zBX functions 6
zData Appliance 266
zEDC 6
zFS, in AD-CD system 244
zIIP or zAAP, performance 330
ZOSSERV.XMIT file 284
zPDT build information 261
ZPDT_EXP_EMAIL environmental variable 162
ZPDTMSRV module 284
zPDTSecureUpdate command 171
zpdtSecureUpdate command 82, 96, 258
zVM_CouplingFacility 252
 Index 351

352 IBM zPDT Reference and Guide

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

IBM
 zPDT Reference and Guide: System

 z Personal Developm
ent Tool

IBM
 zPDT Reference and Guide:

System
 z Personal Developm

ent Tool

IBM
 zPDT Reference and Guide

IBM
 zPDT Reference and Guide

IBM
 zPDT Reference and Guide

IBM
 zPDT Reference and Guide

®

SG24-8205-03 ISBN 0738439347

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

IBM zPDT Guide and Reference
System z Personal Development Tool

IBM System z
Personal
Development Tool

Full IBM z/OS usage

Linux base

This IBM Redbooks publication provides both introductory information
and technical details for the IBM System z Personal Development Tool
(zPDT), which produces a small System z environment suitable for
application development. zPDT is a PC Linux application. When zPDT is
installed (on Linux), normal System z Operating Systems (such as IBM
z/OS) may be run on it. zPDT provides the basic System z architecture
and provides emulated IBM 3390 disk drives, 3270 interfaces, OSA
interfaces, and so forth.

This current document merges four separate previous Redbooks
publications into this single book. The primary reason for this merger is
to provide simpler zPDT documentation usage when viewing or
searching the documentation onscreen.

The systems that are discussed in this document are complex, with
elements of Linux (for the underlying PC machine), IBM z/Architecture
(for the core zPDT elements), System z I/O functions (for emulated I/O
devices), z/OS (the most common System z operating system), and
various applications and subsystems under z/OS. We assume that the
reader is familiar with general concepts and terminology of System z
hardware and software elements, and with basic PC Linux
characteristics.

This book provides the primary documentation for zPDT and includes
basic system overview, installation, operation, z/OS distribution, FAQs.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	Authors
	Comments welcome
	Stay connected to IBM Redbooks

	Chapter 1. Introduction
	1.1 General architecture
	1.2 zPDT security, integrity, and RAS concepts
	1.3 Terminology changes

	Chapter 2. Function, releases, content
	2.1 z System characteristics
	2.1.1 Architecture levels

	2.2 Hardware token
	2.2.1 Emulated I/O
	2.2.2 Concurrent PC workloads

	2.3 Operational overview
	2.3.1 Linux userids
	2.3.2 zPDT instances
	2.3.3 zPDT console
	2.3.4 Performance

	2.4 Base configurations
	2.4.1 Hardware and software levels

	2.5 Using older z System architectures
	2.6 zPDT Components
	2.6.1 zPDT elements
	2.6.2 Memory
	2.6.3 Disk space
	2.6.4 LAN adapters
	2.6.5 Device maps
	2.6.6 Linux directory structure
	2.6.7 zPDT control structure

	2.7 ISV zPDT and zD&T zPDT differences
	2.8 zPDT releases
	2.8.1 Version 1 Release 8 (December 2017)
	2.8.2 Version 1 Release 7 (March 2017)
	2.8.3 Version 1 Release 6 (March 2015)
	2.8.4 Version 1 Release 5 (February 2014)
	2.8.5 Version 1 Release 4, and fix pack 1 (December 2012, May 2013)
	2.8.6 Version 1 Release 3 (March 2012)
	2.8.7 Version 1 Release 2 (June 2011)
	2.8.8 Version 1 Release 1

	Chapter 3. Devmaps
	3.1 Device maps
	3.2 System stanza
	3.2.1 Adjunct-processor stanza
	3.2.2 System timer protocol stanza

	3.3 Manager stanzas
	3.3.1 The awsckd device manager
	3.3.2 The awsfba device manager
	3.3.3 The aws3274 device manager
	3.3.4 The awstape device manager
	3.3.5 The awsosa device manager
	3.3.6 The awsrdr device manager
	3.3.7 The awsprt device manager
	3.3.8 The awscmd device manager
	3.3.9 The awsscsi device manager
	3.3.10 The aws3215 device manager
	3.3.11 The awsoma device manager
	3.3.12 The awsctc device manager

	Chapter 4. zPDT commands
	4.1 The commands with examples
	4.1.1 The adstop command
	4.1.2 The alcckd command
	4.1.3 The alcfba command
	4.1.4 The ap_create command
	4.1.5 The ap_destroy command
	4.1.6 The ap_query command
	4.1.7 The ap_von and ap_voff commands
	4.1.8 The ap_vpd command
	4.1.9 The ap_zeroize command
	4.1.10 The attn command
	4.1.11 The aws_bashrc and aws_sysctl commands
	4.1.12 The aws_findlinuxtape command
	4.1.13 The aws_tapeInit command
	4.1.14 The aws_tapeInsp command
	4.1.15 The awsckmap command
	4.1.16 The awsin command
	4.1.17 The awsmount command
	4.1.18 The awsstart command
	4.1.19 The awsstat command
	4.1.20 The awsstop command
	4.1.21 The card2tape command
	4.1.22 The card2txt command
	4.1.23 The ckdPrint command
	4.1.24 The clientconfig command
	4.1.25 The clientconfig_authority command
	4.1.26 The clientconfig_cli command
	4.1.27 The cpu command
	4.1.28 The d command
	4.1.29 The display_gen2_acclog command
	4.1.30 The fbaPrint command
	4.1.31 The find_io command
	4.1.32 The hckd2ckd and hfba2fba commands
	4.1.33 The interrupt command
	4.1.34 The ipl command
	4.1.35 The ipl_dvd command
	4.1.36 The ldk_server_config command
	4.1.37 The listVtoc command
	4.1.38 The loadparm command
	4.1.39 The managelogs command
	4.1.40 The memld command
	4.1.41 The mount_dvd command
	4.1.42 The msgInfo command
	4.1.43 The oprmsg command
	4.1.44 The pdsUtil command
	4.1.45 The query command
	4.1.46 The query_license command
	4.1.47 The rassummary command
	4.1.48 The ready command
	4.1.49 The restart command
	4.1.50 The scsi2tape command
	4.1.51 The SecureUpdateUtility command
	4.1.52 The SecureUpdate_authority command
	4.1.53 The senderrdata command
	4.1.54 The serverconfig command
	4.1.55 The serverconfig_cli command
	4.1.56 The settod command
	4.1.57 The snapdump command
	4.1.58 The st command
	4.1.59 The start command
	4.1.60 The stop command
	4.1.61 The storestatus command
	4.1.62 The storestop command
	4.1.63 The stpserverstart command
	4.1.64 The stpserverstop command
	4.1.65 The stpserverquery command
	4.1.66 The sys_reset command
	4.1.67 The tape2file command
	4.1.68 The tape2scsi command
	4.1.69 The tape2tape command
	4.1.70 The tapeCheck command
	4.1.71 The tapePrint command
	4.1.72 The token command
	4.1.73 The txt2card command
	4.1.74 The uimcheck command
	4.1.75 The uimreset command
	4.1.76 The uimserverstart command
	4.1.77 The uimserverstop command
	4.1.78 The Z1090_ADCD_install and Z1091_ADCD_install commands
	4.1.79 The Z1090_token_update and Z1091_token_update commands
	4.1.80 The Z1090_removall command
	4.1.81 The z1090instcheck command
	4.1.82 The z1090term command
	4.1.83 The z1090ver and z1091ver command
	4.1.84 The zpdtSecureUpdate command

	Chapter 5. zPDT installation
	5.1 Installation overview
	5.1.1 Disk planning

	5.2 Linux installation
	5.2.1 Other Linux notes

	5.3 TN3270e clients
	5.3.1 x3270 keyboard maps

	5.4 Installing zPDT software
	5.4.1 Alter Linux files

	5.5 Token activation and zPDT serial numbers
	5.6 Starting your new zPDT system
	5.7 Installing a different zPDT release
	5.8 IBM OpenClient special case

	Chapter 6. AD-CD installation
	6.1 General principles
	6.2 z System Operating Systems
	6.2.1 Media

	6.3 Installing a z/OS AD-CD system
	6.3.1 Specific installation instructions
	6.3.2 IODF device numbers
	6.3.3 zPDT control files
	6.3.4 IPL and operation
	6.3.5 Shutting down
	6.3.6 Startup messages
	6.3.7 Local volumes

	6.4 Multiple operating systems

	Chapter 7. LANs
	7.1 OSA CHPIDs
	7.2 Scenarios
	7.3 Overview of LAN usage
	7.3.1 Three 3270 interfaces

	7.4 Basic QDIO setup for z/OS
	7.5 Five scenarios
	7.5.1 Scenario 1
	7.5.2 Scenario 2
	7.5.3 Scenario 3
	7.5.4 Scenario 4
	7.5.5 Scenario 5
	7.5.6 Scenario comparison
	7.5.7 z/OS resolver
	7.5.8 Local router LAN setups

	7.6 Performance problems
	7.6.1 Jumbo frames
	7.6.2 Investigating lan performance problems

	7.7 Wireless connections
	7.8 Telnet to z/OS UNIX system services
	7.9 Choices
	7.10 Useful z/OS networking commands
	7.11 Non-QDIO operation
	7.12 More complete QDIO example
	7.13 VLAN usage
	7.14 Shared Ethernet adapters
	7.15 Base Linux LAN notes
	7.16 Ethernet SNA
	7.17 NFS and SMB

	Chapter 8. zPDT licenses
	8.1 Basic Concepts
	8.1.1 Types of tokens and licenses

	8.2 Using a local zPDT system
	8.3 UIM usage details
	8.4 General zPDT client and server details
	8.5 Client Installation and configuration for remote servers
	8.5.1 Gen1 client configuration
	8.5.2 Gen2 client configuration
	8.5.3 Client UIM configuration

	8.6 Server installation and configuration
	8.6.1 UIM server
	8.6.2 Gen1 License server
	8.6.3 Gen2 License server

	8.7 General Notes
	8.7.1 Firewalls
	8.7.2 Disk and Linux changes
	8.7.3 Backup servers
	8.7.4 Cloning zPDT
	8.7.5 Removing functions
	8.7.6 License expiration notification

	8.8 Scenarios
	8.8.1 Display serial number assignments
	8.8.2 Security
	8.8.3 Resetting UIM
	8.8.4 SafeNet module restarts
	8.8.5 Gen2 servers

	8.9 Server search
	8.10 Numbers
	8.11 Gen1 token activation and renewal
	8.11.1 Overview of Gen1 token updates
	8.11.2 Gen1 token license update details (1090 tokens)

	8.12 Summary of relevant zPDT commands and files
	8.13 License manager glossary

	Chapter 9. Other System z Operating Systems
	9.1 z/VSE
	9.2 Linux for z Systems
	9.3 z/VM
	9.4 Installing the AD-CD z/VM 6.4 system
	9.4.1 zPDT devmap
	9.4.2 zPDT sensitivity

	9.5 IPL and logon
	9.6 Quick z/VM review
	9.6.1 CMS
	9.6.2 User MAINT
	9.6.3 Minidisks and files
	9.6.4 Inspecting your disks
	9.6.5 XEDIT
	9.6.6 z/VM directory
	9.6.7 Spool contents
	9.6.8 Simple system queries
	9.6.9 zIIPs and zAAPs
	9.6.10 Paging

	9.7 z/TPF

	Chapter 10. Multiple instances and guests
	10.1 Multiple instances or guests
	10.2 Multiple guests in one instance
	10.3 Independent instances
	10.4 Instances with shared I/O
	10.5 Additional shared functions

	Chapter 11. The awscmd command
	11.1 Sample z/VM script
	11.2 z/OS use
	11.2.1 Sample z/OS program for awscmd

	Chapter 12. Minor z/OS notes
	12.1 Maintenance for AD-CD z/OS systems
	12.2 z/OS CP and memory display
	12.3 Excessive Health Checker messages
	12.4 z/OS spin loop timeouts
	12.5 Larger 3270 display
	12.6 z/OS disk STORAGE space
	12.7 Stand-alone z/OS dump
	12.7.1 Generating a stand-alone dump program
	12.7.2 Stand-alone dump output dataset
	12.7.3 Operating a stand-alone z/OS dump

	12.8 Moving 3390 volumes
	12.8.1 Create a source dump
	12.8.2 Send dump to Linux
	12.8.3 Receive dump

	12.9 IODF Changes with zPDT
	12.10 Local printing
	12.10.1 Setup
	12.10.2 Operational technique

	12.11 SYS1.LOGREC full
	12.12 Lost MVS console
	12.13 Unable to start ISPF
	12.14 Customized Offering Driver (COD)
	12.14.1 TCP/IP connection

	12.15 WLM and AD-CD
	12.16 RMF Monitor III
	12.17 OTELNET
	12.18 Compressing PARMLIB
	12.19 Burning 3390 volumes on CD
	12.20 Delete logstreams
	12.21 SMF
	12.22 Disabled waits

	Chapter 13. Additional zPDT notes
	13.1 “Free zIIPs”
	13.2 PC Hyper-Threading
	13.3 cpuopt statement
	13.4 Read-only and shared DASD
	13.4.1 Shared read-only volumes

	13.5 Very large PC memory
	13.6 Token dates and times
	13.7 Typing OPRMSG too many times
	13.8 Important Linux command window
	13.9 Linux “out of memory”
	13.10 The crontab and sudo entries
	13.11 Dynamic configuration changes
	13.12 Security exposures
	13.12.1 Reducing root usage
	13.12.2 Linux suid use
	13.12.3 Gen1 token server monitoring

	13.13 z1090instcheck
	13.14 zPDT build information
	13.15 CKD versioning
	13.16 1090 messages
	13.17 TCP/UDP ports
	13.18 Remote operation
	13.19 Many zPDT devices
	13.20 Startup scripts
	13.21 Suspend and Hibernation
	13.22 Channel connections
	13.23 x3270 scripting
	13.24 Premounted tape

	Chapter 14. Tape drives and tapes
	14.1 The awsscsi device manager
	14.2 Parallel SCSI adapters
	14.2.1 Specific hardware tested

	14.3 zPDT 359x Tape Support
	14.3.1 The FCP Adapters
	14.3.2 3590/3592 Tape drives

	14.4 zPDT SCSI utilities
	14.5 Linux SCSI tape utilities
	14.5.1 awstape utilities

	14.6 Practical advice

	Chapter 15. DASD volume migration
	15.1 Warnings
	15.2 Operational characteristics of the migration utility
	15.3 Installation of the migration utility for z/OS
	15.3.1 Server installation
	15.3.2 RACF requirements

	15.4 Operation of the server under z/OS
	15.5 Installation of the server under z/VM
	15.6 Operation of server under z/VM
	15.7 The client commands
	15.8 Additional notes

	Chapter 16. Channel-to-channel
	16.1 z/OS use example
	16.2 Multiple instances and z/VM
	16.2.1 Devmaps

	Chapter 17. Cryptographic usage
	17.1 Background information
	17.2 Devmap specification
	17.3 Initial ICSF startup
	17.4 Operational notes
	17.4.1 Multiple zPDT instances
	17.4.2 Coprocessor control commands
	17.4.3 New z/OS releases
	17.4.4 Programming with CSF
	17.4.5 z/VM usage

	Chapter 18. Virtualization
	Chapter 19. Problem handling
	19.1 Problems starting zPDT operation
	19.2 Problems during zPDT operation
	19.3 Core images
	19.4 Logs
	19.5 Emulated volume problems
	19.6 Linux monitoring

	Chapter 20. Server Time Protocol (STP)
	20.1 CCT uses
	20.2 Configuration
	20.3 Additional details
	20.3.1 Leap seconds

	Appendix A. FAQ
	Related publications
	IBM Redbooks
	Other References
	Help from IBM

	Index
	Back cover

